Asteroids

Watch a Nicely Stabilized Video of DART Flying Past Didymos and Slamming Into Dimorphos

Here’s one of the best videos we’ve seen of the last minutes of the Double Asteroid Redirection Test (DART) mission as it headed towards and slammed into the asteroid Dimorphos. This stabilized version of the last five-and-a-half minutes of images leading up to DART’s intentional collision with the asteroid was produced from NASA’s DART images. It was produced by the YouTube channel Spei’s Space News from Germany.

DART streamed these images from its DRACO camera back to Earth in real time as it approached the asteroid. This replay movie is 10 times faster than reality, except for the last six images, which are shown at the same rate that the spacecraft returned them. DRACO stands for Didymos Reconnaissance and Asteroid Camera for Optical navigation.

Below you can see the real-time views coming in to DART’s mission control at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. The team can be seen cheering, clapping and giving each other high fives as the spacecraft performed its heroic duty, which was to intentionally collide with an asteroid in attempt to deflect it, a technique known as kinetic impact.

Dimorphos is a small asteroid moonlet, just 530 feet (160 meters) in diameter. It orbits a larger, 2,560-foot (780-meter) asteroid called Didymos. Neither asteroid poses a threat to Earth, and the impact should change the way Dimorphos orbits Didymos, making the duo the perfect target for this test. NASA says that DART’s impact demonstrates a viable mitigation technique for protecting the planet from an Earth-bound asteroid or comet, if one were discovered.

DART launched on November 24, 2021, and after 10 months of flying about 7 million miles (11 million kilometers through space, caught up with Dimorphos. DART weighed 1,260-pounds (570-kilograms) and crashed into the asteroid at roughly 14,000 miles (22,530 kilometers) per hour, which is expected to have slightly slowed the asteroid’s orbital speed.

The DART team has said they expect the impact to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes; precisely measuring how much the asteroid was deflected is one of the primary purposes of the full-scale test. Some of the early indications from images taken by both ground-based and space telescopes are that the impact appeared to be larger than expected. More details from the telescopes will be coming out in the coming weeks and months, so it may be some time before we know precisely how much DART’s impact altered Dimorphos’ the asteroid’s orbit around Didymos.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Neutron Stars are Jetting Material Away at 40% the Speed of Light

It’s a well known fact that black holes absorb anything that falls into them. Often…

3 hours ago

Lunar Night Permanently Ends the Odysseus Mission

On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space…

12 hours ago

Webb Joins the Hunt for Protoplanets

We can't understand what we can't clearly see. That fact plagues scientists who study how…

15 hours ago

This Supernova Lit Up the Sky in 1181. Here’s What it Looks Like Now

Historical astronomical records from China and Japan recorded a supernova explosion in the year 1181.…

17 hours ago

Hubble Sees a Star About to Ignite

This is an image of the FS Tau multi-star system taken by the Hubble Space…

18 hours ago

This Black Hole is a Total Underachiever

Anyone can be an underachiever, even if you're an astronomical singularity weighing over four billion…

18 hours ago