Cosmology

Does a “Mirror World of Particles” Explain the Crisis in Cosmology?

The idea of a mirror universe is a common trope in science fiction. A world similar to ours where we might find our evil doppelganger or a version of us who actually asked out our high school crush. But the concept of a mirror universe has been often studied in theoretical cosmology, and as a new study shows, it might help us solve problems with the cosmological constant.

The Hubble constant, or Hubble parameter, is a measure of the rate at which our universe expands. This expansion was first demonstrated by Edwin Hubble, using data from Henrietta Leavitt, Vesto Slipher, and others. Over the next several decades, measurements of this expansion settled on a rate of about 70 km/sec/Mpc. Give or take quite a bit. Astronomers figured that as our measurements became precise, the various methods would settle on a common value, but that didn’t happen. In fact, in the past several years measurements have become so precise they outright disagree. This is sometimes known as the cosmic tension problem.

At this point the observed values of the Hubble constant cluster into two groups. Measurements of fluctuations in the cosmic microwave background point toward a lower value, around 67 km/sec/Mpc, while observations of objects such as distant supernovae yield a higher value around 73 km/sec/Mpc. Something clearly doesn’t add up, and theoretical physicists are trying to figure out why. This is where the mirror universe might come in.

A mirror of our world in the stars. Credit: Beate Bachmann, via Pixabay

Wild ideas tend to fall in and out of popularity in theoretical physics. The mirror universe idea is no exception. It was studied quite a bit back in the 1990s as a way to deal with the problem of matter-antimatter symmetry. We can create matter particles in the lab, but when we do, we also create antimatter particles. They always come in pairs. So when particles formed in the early universe, where did all their antimatter siblings go? One idea was that the universe itself formed as a pair. Our matter universe and a similar antimatter universe. Problem solved. The idea fell out of favor for various reasons, but this new study looks at how it might solve the Hubble problem.

The team discovered an invariance in what are known as unitless parameters. The most famous of these is the fine structure constant, which has a value of about 1/137. Basically, you can combine measured parameters in such a way that all the units cancel out, giving you the same number no matter what units you use, which is great if you are a theoretician. The team found that when you tweak cosmological models to match the observed expansion rates, several unitless parameters stay the same, which suggests an underlying cosmic symmetry. If you impose this symmetry more broadly, you can scale the rate of gravitational free-fall and the photon-electron scattering rate so that the different methods of Hubble measurement better agree. And if this invariance is real, it implies the existence of a mirror universe. One that would affect our universe through a faint gravitational pull.

It should be pointed out that this study is mostly a proof of concept. It lays out how this cosmic invariance might solve the Hubble constant problem, but doesn’t go so far as to prove it’s a solution. A more detailed model will be needed for that. But it’s an interesting idea. And it’s good to know that if your evil doppelganger is out there, they can only influence your life gravitationally…

Reference: Cyr-Racine, Francis-Yan, Fei Ge, and Lloyd Knox. “Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant.” Physical Review Letters 128.20 (2022): 201301.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Artemis II is Literally Coming Together

NASA engineers have completed assembling the core stage of the Artemis II rocket, which will…

56 mins ago

It's Time For Your Annual Weather Update for the Outer Solar System

A couple times a year, the Hubble Space Telescope turns its powerful gaze on the…

3 hours ago

Europa’s Ice Rotates at a Different Speed From its Interior. Now We May Know Why

Jupiter’s moon, Europa, contains a large ocean of salty water beneath its icy shell, some…

16 hours ago

Are We Alone? The Answer Might Be in Space Dust That’s All Around Us

When it comes to looking for extraterrestrial life "out there" astronomers scan distant planets. They…

22 hours ago

Moons Orbiting Rogue Planets Could be Habitable

A new study reveals how rogue planets could have "Ocean World" moons that may support…

22 hours ago

Type One Energy Raises $29M to Work on a Crazy Fusion Device

A Wisconsin-based startup called Type One Energy says it's closed an over-subscribed $29 million financing…

1 day ago