Categories: Astronomy

How Old Am I? Star Cluster Perplexes Astronomers

Ever have one of those moments when you can’t remember how old you are? A group of astronomers may have felt they were having a “senior moment” when they couldn’t seem to figure out exactly the age of stars in the open star cluster NGC 6791, located in the constellation Lyra. Conventional thinking among astronomers is that stars in open clusters form at the same time, but in this particular cluster, researchers found stars at three different ages: one group of white dwarf stars appeared to be 4 billion years old, a second group of white dwarfs seemed to 6 billion years old, while the other regular stars were calculated to be 8 billion years of age. The astronomers say this dilemma may fundamentally challenge the way astronomers estimate cluster ages. Ivan King of the University of Washington and leader of the group using the Hubble Space Telescope to study this star cluster said: “This finding means that there is something about white dwarf evolution that we don’t understand.”

I just love it when astronomers say something like that, because it means they’ll return to their telescopes and the data in order to figure out the dilemma, and we’ll learn something new. And that’s just what they did. At least, partially.

“The age discrepancy is a problem because stars in an open cluster should be the same age. They form at the same time within a large cloud of interstellar dust and gas. So we were really puzzled about what was going on,” explained astronomer Luigi Bedin, who works at the Space Telescope Science Institute in Baltimore, Md.

After extensive analysis, members of the research team realized how the two groups of white dwarfs can look different and yet have the same age. It is possible that the younger- looking group consists of the same type of stars, but the stars are paired off in binary-star systems, where two stars orbit each other. Because of the cluster’s great distance, astronomers see the paired stars as a brighter single star.

Their brightness made them look younger.

Binary systems are also a significant fraction of the normal stellar population in NGC 6791, which contains over 10,000 stars, and are also observed in many other clusters. However, this would be the first time they have been found in a white-dwarf population.

“Our demonstration that binaries are the cause of the anomaly is an elegant resolution of a seemingly inexplicable enigma,” said team member Giampaolo Piotto the University of Padova in Italy.

Bedin and his colleagues are relieved that they now have only two ages to reconcile: an 8- billion-year age of the normal stellar population and a 6-billion-year age for the white dwarfs. All they need now is a process that slows down white-dwarf evolution.

Hubble’s Advanced Camera for Surveys analyzed the cooling rate of the entire population of white dwarfs in NGC 6791, from brightest to dimmest. White dwarfs are the smoldering embers of Sun-like stars that no longer generate nuclear energy and have burned out. Their hot remaining cores radiate heat for billions of years as they slowly fade into darkness. Astronomers have used white dwarfs as a reliable measure of the ages of star clusters, because they are the relics of the first cluster stars that exhausted their nuclear fuel.

White dwarfs have long been considered dependable because they cool down at a predictable rate. The older the dwarf, the cooler it is, making it a seemingly perfect clock that has been ticking for almost as long as the cluster has existed.

All right, astronomers, back to your telescopes to get this all figured out! And when they do, the rest of you can read about it on Universe Today. In the meantime, enjoy the lovely images above of star cluster NGC 6791.

News Source: Hubble press release

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

1 day ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

1 day ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

1 day ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

2 days ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

2 days ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago