Categories: Astronomy

Astronomy Jargon 101: Type-1a Supernovae

In this series we are exploring the weird and wonderful world of astronomy jargon! Today’s topic is almost too hot to handle: Type-1a Supernovae!

Let’s say you have a binary star system, which is common enough. Let’s say that one of the stars is bigger than the other (happens all the time), and goes through its usual stellar life cycle faster. Eventually it dies, shedding its outer layers and leaving behind a white dwarf star.

After a considerable amount of time, eventually the companion star catches up in its own life cycle, swelling and becoming a red giant. Sometimes, that red giant becomes so large, and wanders too close to its dead sibling, that gas from the giant begins to pool on the surface of the white dwarf.

I won’t spoil it: a Type-1a supernova is about to happen.

White dwarf stars are funny things. They’re held up by exotic quantum forces, something called degeneracy pressure. This degeneracy pressure can keep the star together for ages, but it has a limit. If the star gets too heavy, the degeneracy pressure can be overwhelmed and the star collapses.

When stars collapse, they generally go boom. In the case of a Type-1a supernova, all the carbon and oxygen that make up the white dwarf find themselves a lot closer together than they prefer, which triggers a flash of fusion. That fusion releases enough energy to ignite more fusion, and before you know it the entire white dwarf has blown itself to smithereens.

One of the nifty side benefits of this process is that all Type-1a supernovae across the universe are pretty much the same. With only a little variation, it’s the same game every time. That means that these types of supernovae have roughly the same brightness, every time. Astronomers can use that fact to calibrate the distances to their host galaxies, enabling them to make truly enormous distance measurements.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

14 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

15 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

17 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

18 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

1 day ago

The Solar Wind is Stripping Oxygen and Carbon Away From Venus

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second…

1 day ago