Categories: Astronomy

Astronomy Jargon 101: Type-1a Supernovae

In this series we are exploring the weird and wonderful world of astronomy jargon! Today’s topic is almost too hot to handle: Type-1a Supernovae!

Let’s say you have a binary star system, which is common enough. Let’s say that one of the stars is bigger than the other (happens all the time), and goes through its usual stellar life cycle faster. Eventually it dies, shedding its outer layers and leaving behind a white dwarf star.

After a considerable amount of time, eventually the companion star catches up in its own life cycle, swelling and becoming a red giant. Sometimes, that red giant becomes so large, and wanders too close to its dead sibling, that gas from the giant begins to pool on the surface of the white dwarf.

I won’t spoil it: a Type-1a supernova is about to happen.

White dwarf stars are funny things. They’re held up by exotic quantum forces, something called degeneracy pressure. This degeneracy pressure can keep the star together for ages, but it has a limit. If the star gets too heavy, the degeneracy pressure can be overwhelmed and the star collapses.

When stars collapse, they generally go boom. In the case of a Type-1a supernova, all the carbon and oxygen that make up the white dwarf find themselves a lot closer together than they prefer, which triggers a flash of fusion. That fusion releases enough energy to ignite more fusion, and before you know it the entire white dwarf has blown itself to smithereens.

One of the nifty side benefits of this process is that all Type-1a supernovae across the universe are pretty much the same. With only a little variation, it’s the same game every time. That means that these types of supernovae have roughly the same brightness, every time. Astronomers can use that fact to calibrate the distances to their host galaxies, enabling them to make truly enormous distance measurements.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

By Watching the Sun, Astronomers are Learning More about Exoplanets

Watching the Olympics recently and the amazing effort of the hammer throwers was a wonderful…

4 hours ago

Coronal Loops-Digital Art Combination Captures Power of the Sun, Rendered by Andrew McCarthy

Our Sun is one of the most fascinating objects in the universe and photographing it…

5 hours ago

Estimating the Basic Settings of the Universe

The Standard Model describes how the Universe has evolved at large scale. There are six…

6 hours ago

Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes

The James Webb Space Telescope (JWST) keeps finding supermassive black holes (SMBH) in the early…

14 hours ago

If Gravitons Exist, this Experiment Might Find Them

There are four fundamental forces in the Universe; strong, weak, electromagnetic and gravity. Quantum theory…

1 day ago

How Vegetation Could Impact the Climate of Exoplanets

The term 'habitable zone' is a broad definition that serves a purpose in our age…

1 day ago