Categories: Astronomy

Astronomy Jargon 101: R-Process

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll quickly see what we’re talking about this week: r-process!

How do you make heavy elements? Some can be forged deep inside a star, where the intense pressures and temperatures are enough to fuse elements. Right now, at this very moment, the sun is turning hydrogen into helium. Towards the end of its life, it will convert helium into carbon and oxygen. Even heavier stars can forge silicon, magnesium, and iron.

It’s through this process that the stars of our universe have turned the primordial hydrogen and helium of the big bang into more elements. But stars themselves are incapable of fusing elements beyond iron, because that fusion process sucks up energy rather than releasing it.

To make elements heavier than iron, you need a few key ingredients. One, you need a lot of seeds, a lot of nuclei roaming around, ready to get heavy. Two, you need neutrons. A lot of them. Three, you need way more energy than is strictly reasonable.

These are the ingredients behind the r-process, which is short for rapid neutron-capture process. It happens in extreme environments. On Earth, it can happen briefly during a nuclear bomb detonation. In space, it happens when stars go supernova or neutron stars collide.

What happens during the r-process is that the seed nuclei get absolutely blasted with neutrons. The neutrons crash into the nuclei so quickly that they can build up to heavier elements before they naturally radioactively decay into lighter ones. Through this process, the majority of the periodic table can be filled out in an extremely brief amount of time. While the entire process may take a week or so to sort out, the initial neutron blast is over and done with in a matter of seconds. After that, any radioactive elements decay into more stable isotopes.

This process happens during Type-II (core collapse) supernovae, but the majority of heavy elements in the universe come from neutron star collisions. While not nearly as powerful as a supernova, there are a whole heck of a lot of neutrons involved, and so all the conditions are just right.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

By Watching the Sun, Astronomers are Learning More about Exoplanets

Watching the Olympics recently and the amazing effort of the hammer throwers was a wonderful…

6 hours ago

Coronal Loops-Digital Art Combination Captures Power of the Sun, Rendered by Andrew McCarthy

Our Sun is one of the most fascinating objects in the universe and photographing it…

7 hours ago

Estimating the Basic Settings of the Universe

The Standard Model describes how the Universe has evolved at large scale. There are six…

7 hours ago

Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes

The James Webb Space Telescope (JWST) keeps finding supermassive black holes (SMBH) in the early…

15 hours ago

If Gravitons Exist, this Experiment Might Find Them

There are four fundamental forces in the Universe; strong, weak, electromagnetic and gravity. Quantum theory…

1 day ago

How Vegetation Could Impact the Climate of Exoplanets

The term 'habitable zone' is a broad definition that serves a purpose in our age…

1 day ago