Categories: Astronomy

Astronomy Jargon 101: R-Process

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll quickly see what we’re talking about this week: r-process!

How do you make heavy elements? Some can be forged deep inside a star, where the intense pressures and temperatures are enough to fuse elements. Right now, at this very moment, the sun is turning hydrogen into helium. Towards the end of its life, it will convert helium into carbon and oxygen. Even heavier stars can forge silicon, magnesium, and iron.

It’s through this process that the stars of our universe have turned the primordial hydrogen and helium of the big bang into more elements. But stars themselves are incapable of fusing elements beyond iron, because that fusion process sucks up energy rather than releasing it.

To make elements heavier than iron, you need a few key ingredients. One, you need a lot of seeds, a lot of nuclei roaming around, ready to get heavy. Two, you need neutrons. A lot of them. Three, you need way more energy than is strictly reasonable.

These are the ingredients behind the r-process, which is short for rapid neutron-capture process. It happens in extreme environments. On Earth, it can happen briefly during a nuclear bomb detonation. In space, it happens when stars go supernova or neutron stars collide.

What happens during the r-process is that the seed nuclei get absolutely blasted with neutrons. The neutrons crash into the nuclei so quickly that they can build up to heavier elements before they naturally radioactively decay into lighter ones. Through this process, the majority of the periodic table can be filled out in an extremely brief amount of time. While the entire process may take a week or so to sort out, the initial neutron blast is over and done with in a matter of seconds. After that, any radioactive elements decay into more stable isotopes.

This process happens during Type-II (core collapse) supernovae, but the majority of heavy elements in the universe come from neutron star collisions. While not nearly as powerful as a supernova, there are a whole heck of a lot of neutrons involved, and so all the conditions are just right.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

10 hours ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

20 hours ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

2 days ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

2 days ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

2 days ago