Categories: Radio Astronomy

A map of 25,000 Supermassive Black Holes Across the Universe

The Low-Frequency Array (LOFAR) is a different kind of radio telescope. Although radio light has the longest wavelengths and lowest frequencies of the electromagnetic spectrum, much of radio astronomy has focused on the higher frequency end. Observatories such as ALMA study radio light at frequencies of hundreds of Gigahertz, and the VLA studies the fifty Gigahertz range, LOFAR captures radio signals below 250 Megahertz, which is in the range of the lowest radio frequencies that can be seen from Earth.

Most low frequency radio sources are yet to be explored. Credit: de Gasperin, et al

Low-frequency radio astronomy is challenging because astronomical radio sources are very faint. Low-frequency light also has a longer wavelength, which means that it is hard to capture radio images with good resolution. To overcome these challenges, LOFAR uses an array of omnidirectional antennas. It has about 20,000 antennas clustered at 52 stations across Europe. Together they create a virtual telescope more than 1,000 kilometers across. With such a large number of antennas, processing the data is extremely complex. Other radio telescopes also combine multiple signals from an antenna array, but LOFAR operates at such low frequencies that Earth’s ionosphere can distort the signals. It’s similar to the way visible light can be distorted when viewed through ripples of water. So powerful new software had to be developed to convert the radio data into images of the sky.

Recently, LOFAR released the first data on its Long Baseline Array Sky Survey. They have only mapped 4% of the northern sky so far, but have already mapped 25,000 supermassive black holes. While the universe is filled with radio sources, most low-frequency radio light comes from concentrated sources such as black holes at the hearts of galaxies. LOFAR has a high enough resolution that the black hole map looks like a starry night, with each black hole as an isolated radio dot, as you can see in the image above.

It will take several more years for the team to make a full map of the northern sky. When completed, the sky survey could help us learn not only about black holes but also about the large-scale structure of the cosmos.

Reference: de Gasperin, F., et al. “The LOFAR LBA Sky Survey I. survey description and preliminary data release.” arXiv preprint arXiv:2102.09238 (2021).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

How Gravitational Waves Could Let Us See the First Moments After the Big Bang

Cosmology has had several ground-breaking discoveries over the last 100+ years since Einstein developed his…

1 hour ago

Can an Asteroid's Movements Reveal a New Force in the Universe?

When NASA's OSIRIS-REx mission arrived at asteroid Bennu, its primary mission was to grab a…

2 hours ago

New Research Could Help Resolve the “Three-Body Problem”

Perhaps you've heard of the popular Netflix show and the science fiction novel on which…

18 hours ago

Webb Observations Shed New Light on Cosmic Reionization

The "Epoch of Reionization" was a critical period for cosmic evolution and has always fascinated…

24 hours ago

SpaceX’s Mechazilla Catches a Starship Booster on First Try

For the first time ever, SpaceX has followed through on a Starship test launch by…

1 day ago

A Possible Exomoon Could be Volcanic, like Jupiter’s Moon Io

In 2012, astronomers detected a gas giant transiting in front of WASP-49A, a G-type star…

2 days ago