Categories: Planetary Formation

Astronomers are now Finding Planetary Disks Around the Smallest, Least Massive Stars

Astronomers have been watching planetary systems form around sun-like stars for decades. And now, new observations with the ALMA telescope reveal the same process playing out around the smallest, but most common, stars in galaxy.

The smallest stars in the universe, red dwarf stars, are known to have planetary systems, as shown by the famous examples of Proxima b and the TRAPPIST-1 system. But to date, astronomers have never seen one of these stars in the process of actually forming those planets.

But also to date, astronomers haven’t had ALMA, currently one of the most powerful telescopes in the world. ALMA (the Atacama Large Millimeter/submillimeter Array) is jointly operated by the European Southern Observatory (ESO), by the National Radio Astronomy Observatory (NRAO), and by the National Astronomical Observatory of Japan (NAOJ). The wavelengths of its observations are especially good at observing young planetary systems in the process of forming.

So that’s exactly what Nicolas Kurtovic, a PhD student at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, did, mapping and analyzing six protoplanetary disks around young very low-mass stars (VLMS), which are no bigger than 20% of the mass of the sun.

“Despite the tremendous progress in understanding planet formation during recent decades, we don’t know much on how the planets of the most common stars form,” Kurtovic said.

The observations showed the characteristic ring-like gaps in the disks around some of the young stars, which is a telltale sign of planet formation.

“This pilot study was a challenging task because the VLMS disks are small and possess relatively little material, resulting in feeble signals that are very hard to detect,” said Dr. Paola Pinilla. Pinilla leads a research group at MPIA titled “The Genesis of Planets” in which Kurtovic is a member.

These are crucial and very lucky observations, because the dust – an essential ingredient for seeding the formation of planets – tends to migrate inwards towards a young star, where it’s obliterated (and isn’t much use in building planets). For VLMS, this process can happen up to twice as fast as a sun-like star, shutting down planetary formation before it even starts.

However, these observations show that it’s still quite possible, leading to systems like Proxima b and TRAPPIST-1.

“We still do not know how common planets around red dwarf stars are”, Kurtovic conceded. “However, the longevity of red dwarf planetary systems is intriguing concerning habitability and hypothetical civilizations”, he added.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

NASA is Going Ahead With a Hopping Lander to Explore the Lunar Surface

Methods of movement for robotic explorers of other worlds have been as varied as the…

4 hours ago

Two Bizarre red Asteroids Somehow Migrated From the Kuiper Belt all the way to the Main Asteroid Belt

If asked to pick what color asteroids in the asteroid belt would be, red is…

4 hours ago

NASA Chooses Falcon Heavy Over SLS to Launch Europa Clipper, Saving About $2 Billion

The bureaucracy of government control is slowly fading away in space exploration, at least in…

1 day ago

A Black Hole Emitted a Flare Away From us, but its Intense Gravity Redirected the Blast Back in our Direction

Using the XMM-Newton and NuSTAR X-ray telescopes, an international team of scientists were able to…

2 days ago

Lightweight Carbon Fiber Reinforced Plastic Fuel Tanks Pass a Critical Test, and Could Knock a lot of Weight off a Rocket’s dry Mass

Material science is still the unsung hero of space exploration.  Rockets are flashier, and control…

3 days ago

InSight has Mapped out the Interior of Mars, Revealing the Sizes of its Crust, Mantle, and Core

In a series of newly-published papers, NASA scientists have shown how InSight's seismic data allowed…

4 days ago