Categories: White dwarf

Scientists Recreate the Density of a White Dwarf in the Lab

The density of a white dwarf star defies our imagination. A spoonful of white dwarf matter would weigh as much as a car on Earth. Atoms within the star are squeezed so tightly that they are on the edge of collapse. Squeeze a white dwarf just a bit more, and it will collapse into a neutron star. And now, we can recreate the density of a white dwarf within a lab.

A close-up view of a hohlraum chamber. Credit: Lawrence Livermore National Laboratory

The material is created by focusing intense laser light onto a tiny gold chamber known as a hohlraum. The hohlraum contains a 1mm pellet of methylidyne or CH. As a result, the pellet is squeezed to a pressure of 450 million atmospheres, raised to a temperature of 3.5 million degrees, and bathed in x-rays. When the sample pellet is irradiated, the outer layer heats and expands, which creates a shock wave that races toward the center of the pellet at 200 kilometers per second.

The white dwarf matter only exists for short bursts, but it is long enough how the matter behaves. It is known as the equation of state, which describes how a material’s pressure, density, and temperature are related. By nailing down the state equation for white dwarfs, scientists can understand how white dwarfs form and evolve.

The team used a CH sample because they want to understand a type of star known as DQ white dwarfs. These are rare white dwarfs that are extremely hot, and have an atmosphere of carbon gas. Earlier attempts to recreate this type of matter had met with inconsistent results.

While this is the first time white dwarf matter has been created in our solar system, it won’t be the last. In about 5 billion years, our Sun will run out of hydrogen to fuse. After a brief period as a red giant star, the Sun will end its life by collapsing into a white dwarf.

Reference: Kritcher, Andrea L., et al. “A measurement of the equation of state of carbon envelopes of white dwarfs.” Nature 584.7819 (2020): 51-54.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

DART Changed the Shape of Asteroid Dimorphos, not Just its Orbit

On September 26th, 2022, NASA's Double Asteroid Redirection Test (DART) collided with the asteroid Dimorphos,…

11 hours ago

Cosmochemistry: Why study it? What can it teach us about finding life beyond Earth?

Universe Today has had some fantastic discussions with researchers on the importance of studying impact…

11 hours ago

Webb Finds Deep Space Alcohol and Chemicals in Newly Forming Planetary

Since its launch in 2021, the James Webb Space Telescope (JWST) has made some amazing…

13 hours ago

Mercury is the Perfect Destination for a Solar Sail

Solar sails rely upon pressure exerted by sunlight on large surfaces. Get the sail closer…

14 hours ago

Phew, De-Icing Euclid’s Instruments Worked. It’s Seeing Better Now

From its vantage point at the Sun-Earth L2 point, the ESA's Euclid spacecraft is measuring…

17 hours ago

New View Reveals Magnetic Fields Around Our Galaxy’s Giant Black Hole

Fresh imagery from the Event Horizon Telescope traces the lines of powerful magnetic fields spiraling…

17 hours ago