Categories: Astronomysupernova

Supernovae shockwaves aren’t spherical

When stars blow up, they tend to release their energy in a roughly spherical shape. But much after the initial blast, the resulting shock waves can sometimes be elongated in one direction. A team of theorists used laboratory lasers to identify the potential culprit: magnetic fields.

What could possibly tell a supernova blast what to do? A single explosion, which is caused by the death of a massive star after it builds up a core of iron in its heart, can outshine entire galaxies (which, for the record, are made up of hundreds of billions of stars).

The shockwaves released by the explosions spread outwards at a healthy fraction of the speed of light, slamming into any nearby gas and dust (of which there is plenty). Models of supernova explosions tend to predict spherical symmetry in the explosions: however the initial detonation occurs, by the time the shockwaves breach the surface of the exploding star, they tend to expand outwards equally in all directions.

But many supernova remnants end up not-so-spherical, and it can’t be because of the dust and gas they run into; it’s much too thin to have a dramatic effect on the stellar remnants.

To investigate the issue, a team of researchers at the École Polytechnique—Institut Polytechnique de Paris created a scaled-down (and much safer) version of a supernova blast: a laser blasting a cavity into a chamber. But the laser alone wasn’t enough to replicate observations of stretched-out supernova remnants.

They had to add magnetic fields.

As presented in the team’s paper appearing in The Astrophysical Journal, with the presence of a strong magnetic field, the shockwave in the chamber shaped itself, aligning with the direction of the magnetic field and leading to cavities reminiscent of what we see in real supernova remnants.

The physics of supernova remnants are exceedingly complicated, and it seems that we can’t ignore the presence of strong magnetic fields – fields strong enough to shape and sculpt some of the most powerful explosions known in the universe.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

The Milky Way Might be Part of an Even Larger Structure than Laniakea

If you want to pinpoint your place in the Universe, start with your cosmic address.…

15 hours ago

Webb Detects Carbon Dioxide and Hydrogen Perodixe on Pluto’s moon Charon

The James Webb Space Telescope (JWST) has revealed magnificent things about the Universe. Using its…

16 hours ago

The GALAH Fourth Data Release Provides Vital Data on One Million Stars in the Milky Way.

For the past ten years, Australia’s ARC Centre of Excellence in All Sky Astrophysics in…

1 day ago

The Sun Unleashes its Strongest Flare This Cycle

As we approach the peak of Solar Cycle 25, we can expect more and more…

2 days ago

What’s the Best Material for a Lunar Tower?

Physical infrastructure on the Moon will be critical to any long-term human presence there as…

2 days ago

What Does a Trip to Mars Do to the Brain?

It’s not long before a conversation about space travel is likely to turn to the…

3 days ago