Categories: Mars

Channels, Craters and Phoenix’s Landing Site From MRO

The Mars Reconnaissance Orbiter had a busy week, and here are just a few of the images released from the spacecraft’s HiRISE camera. First up is this false color image of a water-carved channel in the Nili Fossae region on Mars. Billions of years ago sediments were transported across the Martian surface via this channel. MRO’s spectrometer, CRISM has detected water-bearing clay minerals in these plains, which were eroded by flows down the channel. Clays are also seen in the sediments deposited on the floor of Jezero Crater, which you can see in the image below.


The sediments deposited form a delta-like mound on the crater floor, which suggests that the crater may have contained a lake at one time. Planetary scientists use these clues found in the form and composition of the Martian surface to provide insights into an ancient era when liquid water may have been more common at the surface.


This image taken on a spring afternoon on Mars shows a young impact crater in the northern part of Isidis Planitia. The crater is fresh enough that some interesting features are visible, where in older craters these features have been eroded.

The ejecta blanket of material thrown out of the crater is distinctly dark and rough, with many small boulders and rugged texture. To the south of the crater there is a wedge-shaped area with little ejected material. This may indicate that the impactor which formed this crater came from the south, since at moderate impact angles ejecta is preferentially thrown in the direction of motion of the impactor. But some erosion has already begun, as seen in the wind-blown ripples on the crater floor.

Of great interest this week is the region on Mars where the Phoenix spacecraft will land on Sunday, May 25. One of the reasons this specific area of Mars was selected for the landing site is based on the overall lack of rocks that could prove hazardous to the lander. Phoenix will analyze the surface dust as well as dig into an ice-rich layer which is predicted to lie within inches of the Martian surface. The polygon-like shapes on the surface here are most likely the result of temperature oscillations which cause the ice to crack. Here’s hoping for a successful landing for Phoenix, with lots of great science returns.

Source: HiRISE

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

More Evidence for the Gravitational Wave Background of the Universe

The gravitational wave background was first detected in 2016. It was announced following the release…

2 days ago

When Uranus and Neptune Migrated, Three Icy Objects Were Crashing Into Them Every Hour!

The giant outer planets haven’t always been in their current position. Uranus and Neptune for…

2 days ago

Astronomers Discover the Second-Lightest “Cotton Candy” Exoplanet to Date.

The hunt for extrasolar planets has revealed some truly interesting candidates, not the least of…

2 days ago

Did Earth’s Multicellular Life Depend on Plate Tectonics?

How did complex life emerge and evolve on the Earth and what does this mean…

2 days ago

Hubble Sees a Brand New Triple Star System

In a world that seems to be switching focus from the Hubble Space Telescope to…

3 days ago

The Venerable Hubble Space Telescope Keeps Delivering

The world was much different in 1990 when NASA astronauts removed the Hubble Space Telescope…

3 days ago