Categories: MeteorsPanspermia

A Microorganism With a Taste for Meteorites Could Help us Understand the Formation of Life on Earth

From the study of meteorite fragments that have fallen to Earth, scientists have confirmed that bacteria can not only survive the harsh conditions of space but can transport biological material between planets. Because of how common meteorite impacts were when life emerged on Earth (ca. 4 billion years ago), scientists have been pondering whether they may have delivered the necessary ingredients for life to thrive.

In a recent study, an international team led by astrobiologist Tetyana Milojevic from the University of Vienna examined a specific type of ancient bacteria that are known to thrive on extraterrestrial meteorites. By examining a meteorite that contained traces of this bacteria, the team determined that these bacteria prefer to feed on meteors – a find which could provide insight into how life emerged on Earth.

The study, which recently appeared in Scientific Reports (a publication maintained by the journal Nature), was led by astrobiologist Tetyana Milojevic of the University of Vienna. For years, she and other members of the Extremophiles/Space Biochemistry Group have been investigating the meteorite-associated growth physiology of the single-celled metallophilic bacteria known as Metallosphaera sedula.

The inorganic constituents from a meteor being trafficked into a microbial cell. Credit and ©: University of Vienna/Tetyana Milojevic

To break it down, Metallosphaera sedula are part of a family known as lithotrophs, bacteria that derive their energy from inorganic sources. Research into their physiological processes could provide insight into how extraterrestrial materials could have been deposited on Earth billions of years ago, which could have provided a steady supply of nutrients and energy for emerging microorganisms.

For the sake of their study, the team examined strains of this bacteria that were found on a meteorite retrieved on Earth. The meteorite in question, Northwest Africa 1172 (NWA 1172), is a multimetallic object that was discovered near the town of Erfoud, Morocco, in 2000. What they found was that this bacteria rapidly colonized the meteor’s material, far faster than it would minerals found on Earth. As Milojevic explained:

“Meteorite-fitness seems to be more beneficial for this ancient microorganism than a diet on terrestrial mineral sources. NWA 1172 is a multimetallic material, which may provide much more trace metals to facilitate metabolic activity and microbial growth. Moreover, the porosity of NWA 1172 might also reflect the superior growth rate of M. sedula.”

Milojevic and her colleagues determined this by examining how the microbes trafficked iron oxide molecules into their cells and monitored how their oxidation state changed over time. This was done by combining multiple analytical spectroscopy techniques with transmission electron microscopy, which provided nanometer-scale resolution and revealed telltale biogeochemical fingerprints on the meteor.

Artist’s concept of the meteorite entering Earth’s atmosphere. Credit: University of Oxford

These fingerprints revealed that M. sedula thrived on the meteor’s metallic constituents. As Milojevic concluded:

“Our investigations validate the ability of M. sedula to perform the biotransformation of meteorite minerals, unravel microbial fingerprints left on meteorite material, and provide the next step towards an understanding of meteorite biogeochemistry.”

The study of lithotrophs that thrive on extraterrestrial objects could help astronomers answer key questions about how and where life emerged in our Solar System. It could also reveal whether or not these objects, and the bacteria that they deposited on Earth over time, played an important role in the evolution of life.

For some time, scientists have theorized that life (or the basic ingredients thereof) are distributed throughout the Universe by meteors, comets, and asteroids. Who knows? Perhaps life on Earth (and possibly throughout the cosmos) owes its existence to extreme bacteria that turn inorganic elements into food for organics.

Further Reading: University of Vienna, Nature

Matt Williams

Matt Williams is the Curator of Universe Today's Guide to Space. He is also a freelance writer, a science fiction author and a Taekwon-Do instructor. He lives with his family on Vancouver Island in beautiful British Columbia.

Recent Posts

Artemis Missions Should Bring Ice Home From the Moon Too

In a recent white paper, a team of scientists proposed that NASA's Artemis astronauts should…

15 hours ago

Design for a Space Habitat With Artificial Gravity That Could Be Grown Larger Over Time to Fit More People

There are two main approaches that humanity can take to living in space.  The one…

1 day ago

Searching for Phosphorus in Other Stars

The Search for Life can be a lot messier than it sounds. The three words…

2 days ago

The Space Court Foundation is Now in Session!

The Space Court Foundation hopes to play a pivotal role in the evolving domain of…

2 days ago

James Webb Will Look for Signs of Life on Planets Orbiting Dead Stars

Can the galaxy's dead stars help us in our search for life? A group of…

3 days ago

Weekly Space Hangout: September 16, 2020 – Dr. Merav Opher Discusses the Shape of the Sun’s Heliosphere This week we are pleased to welcome Dr. Merav Opher, Professor from the Astronomy…

3 days ago