Categories: Earth Observation

Phytoplankton Bloom Erupts in the North Sea

Usually the North Sea conjures up cold and gloomy visions. But as the stunning image above shows, this isn’t always the case. ESA’s Envisat captured vast green swirls of phytoplankton bloom drifting in the North Sea currents on May 7th 2008; spring has most definitely sprung for the Scottish waters. But how is this bright green bloom produced? What has stirred up all this activity? It seems that for a short time, the lush green landscape of Fife is matched by the sea-faring plankton off the UK coast…

This vivid green bloom was created by a type of plankton called phytoplankton. The microscopic plant floats near the surface of large bodies of water where sunlight is plentiful. Like any land-based plant, phytoplankton requires photosynthesis to survive. Other types of plankton include zooplankton (microscopic creatures) and bacterioplankton (water-borne bacteria) survive by feeding off other plankton varieties. The plant variety of plankton, phytoplankton, is well known to produce blooms when nutrients on the marine environment increase, boosting phytoplankton population. It would seem that the water off the Scotland coast has become particularly nutrient rich, with plenty of sunlight, creating magnificent displays observable from orbit.

This particular bloom was captured by the Medium Resolution Imaging Spectrometer (MERIS) instrument on board the ESA’s Envisat operating at a full spatial resolution of 300m (i.e. features of 300m can be resolved). The green hue is from the chlorophyll (essential for photosynthesis) contained within each phytoplankton cell. Depending on the phytoplankton species, it’s possible that there are hundreds to thousands of cells per millilitre of sea water.

Phytoplankton is very important when considering the concentrations of carbon dioxide in the atmosphere and their density in the worlds oceans are modelled in simulations of future climate change. During photosynthesis, they absorb carbon dioxide (and generate oxygen), so they form a highly influential carbon sink.

Source: ESA Picture of the Day

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

10 hours ago

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

Few things in life are certain. But it seems highly probable that people will explore…

12 hours ago

This is an Actual Picture of Space Debris

Space debris is a growing problem, so companies are working on ways to mitigate it.…

13 hours ago

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

1 day ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

2 days ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

2 days ago