Chinese Fusion Experiment Reaches 100 Million Degrees

Fusion power has been the fevered dream of scientists, environmentalists and futurists for almost a century. For the past few decades, scientists have been attempting to find a way to create sustainable fusion reactions that would provide human beings with clean, abundant energy, which would finally break our dependence on fossil fuels and other unclean methods.

In recent years, many positive strides have been made that are bringing the “fusion era” closer to reality. Most recently, scientists working with the Experimental Advanced Superconducting Tokamak (EAST) – aka. the “Chinese artificial sun” – set a new record by super-heating clouds of hydrogen plasma to over 100 million degrees – a temperature which is six times hotter than the Sun itself!

While scientists are capable of fusing atoms of hydrogen to produce energy, the stumbling block has always been reaching what is known as the “break even point”. This is where the energy produced by a self-sustained fusion reaction is equal to the energy needed to initiate it. And while we have no yet reached this point, scientists are getting closer all the time.

The plasma electron temperature over 100 million degrees achieved in 2018 on EAST. Credit: the EAST Team

Currently, the two most popular methods for producing fusion power are the inertial confinement approach, and the tokamak reactor. In the former case, lasers are used to fuse pellets of deuterium (H², or “heavy hydrogen”) to create a fusion reaction. In the latter, the process involves a torus-shaped confinement chamber that uses magnetic fields and an internal current to confine high-energy plasma.

By super-heating this plasma and keeping its stable, a self-sustaining fusion reaction can be created. Whereas other tokamak reactors rely on magnetic coils to keep a plasma torus stable, the Chinese EAST reactor relies on the magnetic fields produced by the moving plasma itself to keep the torus in check. This makes it less stable, but allows physicists to increase heat levels.

After a four month-long campaign, the EAST science team was able to integrate four types of heating power in order to reach a new temperature record. These included lower hybrid wave heating, electron cyclotron wave heating, ion cyclotron resonance heating and neutral beam ion heating. Through these combined methods, the plasma current density profile was optimized.

Once the science team managed to optimize the coupling of the four different heating techniques, they were able to create a cloud of charged particles that contained electrons heated to more than 100 million °C. They also exceeded a power injection level of 10 MegaWatts (MW), and boosted the plasma stored energy to 300 kilojoules (kJ).

The extension of EAST operation scenario in 2018, with the comparion of its energy confinement enhanced factor to the ITER baseline scenario. Credit: EAST Team

This is not the first time that scientists at CASHIPS have reported reaching a fusion milestone. In 2016, the team announced that they had produced hydrogen gas that was three times hotter than the core of the Sun (approx. 50 million °C; 90 million °F), and were able to maintain this temperature for a record-breaking 102 seconds.

With this latest experiment, the EAST team not only doubled the temperature of the plasma torus (setting a new record), they also managed to resolve a number of issues that are crucial to achieving steady state operations. For instance, they resolved the confinement of particle and power exhaust, the timing of which has to be just right in order to maintain a sustained fusion reaction.

The experiment also provided key data for the validation of heat exhaust, transport and current drive models, all of which will be crucial to the realization of several major fusion projects. These include the International Thermonuclear Experimental Reactor (ITER), the Chinese Fusion Engineering Test Reactor (CFETR) and the DEMOnstration Power Station (DEMO). 

Originally built in 2006, EAST has become a fully open test facility that allows the global scientific community to conduct steady-state operations and physics research. And given that the EAST team once again managed to create temperature conditions well in excess of the Sun, the nickname “Chinese artificial Sun” hardly seems like a stretch!

The age of clean energy is getting closer, and not a moment too soon!

Further Reading: Hefei Institutes of Physics, Science Alert

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

Sorry Spock, But “Vulcan” Isn’t a Planet After All

In 2018, astronomers detected an exoplanet around the star 40 Eridani. It's about 16 light-years…

28 mins ago

A Mini-Neptune in the Habitable Zone in a Binary Star System

Sometimes, it seems like habitable worlds can pop up almost anywhere in the universe. A…

2 hours ago

Astronomy Generates Mountains of Data. That’s Perfect for AI

Consumer-grade AI is finding its way into people's daily lives with its ability to generate…

5 hours ago

The Sun’s Magnetic Field Might Only Be Skin Deep

It's coming back! Sunspot AR3664 gave us an amazing display of northern lights in mid-May…

18 hours ago

Volcanoes Were Erupting on Venus in the 1990s

Start talking about Venus and immediately my mind goes to those images from the Venera…

21 hours ago

Enjoy Five New Images from the Euclid Mission

We're fortunate to live in these times. Multiple space telescopes feed us a rich stream…

1 day ago