Physics

Optical Rocket Boosts Electrons to Nearly the Speed of Light

A team of researchers from the University of Nebraska–Lincoln recently conducted an experiment where they were able to accelerate plasma electrons to close to the speed of light. This “optical rocket”, which pushed electrons at a force a trillion-trillion times greater than that generated by a conventional rocket, could have serious implications for everything from space travel to computing and nanotechnology.

When it comes to the future of space exploration and scientific research, it is clear that light will play a vital role. On the one hand, space agencies are investigating “optical communications” – sending information using lasers – to handle the increasing amounts of data missions will collect and send to Earth. Researchers and engineers, on the other hand, are looking to lasers to conduct microscopic manipulations of matter and optical computers.

However, one of the main challenges with these sorts of applications has been the size of the equipment involved. What it comes down to is the fact that conventional, high-energy lasers are generally big and expensive. As such, the ability to scale-down the process where light is used to accelerate particles would not only be a boon for researchers, it could also lead to countless new applications.

One of the lasers at the Extreme Light Laboratory at the University of Nebraska-Lincoln, where a recent experiment accelerated electrons to near the speed of light. Credit: University of Nebraska-Lincoln

This is precisely what the team from UNL’s Extreme Light Laboratory (ELL) did using the laboratory’s Diocles Laser. This x-ray laser, which is ten-million times brighter than the sun, was used to focus rapid laser pulses on plasma electrons – a process known as wakefield acceleration (or electron acceleration). The study which describes their findings recently appeared in the Physical Review Letters.

Ordinarily, light exerts a tiny force wherever it is reflected, scattered or absorbed. While the force is exceedingly small, it can have a cumulative effect when it is focused properly and continuously.  During the experiment, the team found that light pulses caused electrons in the plasma to be pushed out of the path of the pulses, creating plasma waves in their wake.

The electrons also picked up additional acceleration from these “wakefield waves”, which brought them to ultra-relativistic speeds (i.e. close to the speed of light). As Donald Umstadter, the director of the Extreme Light Laboratory, explained in a Nebraska Today press release:

“This new and unique application of intense light can improve the performance of compact electron accelerators. But the novel and more general scientific aspect of our results is that the application of force of light resulted in the direct acceleration of matter.”

Grigory Golovin, the lead researcher on the UNL study, standing over the ELL’s Diocles Laser. Credit: UNL/ELL

This new experiment effectively demonstrated the ability to control the initial phase of wakefield acceleration, which could improve the performance of compact electron accelerators. It is was significant in that it has numerous applications that were previously not possible, due to the enormous size of conventional electron accelerators.

One such application is known as an “optical tweezer”, a process where light is used to manipulate microscopic objects. Another possible application is the concept known as the “light sail” (aka. solar or photon cell), a method of space propulsion where a focused laser beam is used to accelerate a reflective sail to incredible speeds.

One such example of this is Breakthrough Starshot, a proposed spacecraft being developed by Breakthrough Initiatives – a non-profit organization founded by Russian billionaire Yuri Milner. Consisting of a nanocraft being towed by a sightsail, this spacecraft would rely on focused lasers to accelerate it to relativistic speeds (20% the speed of light). At this velocity, the craft would be able to make the journey to Alpha Centauri in just 20 years and could send back images of any exoplanets there (including Proxima b).

In the meantime, this experiment is likely to open up some serious research opportunities for particle physicists. The study was led by  Grigoroy Golovin, a postdoc researcher from the University of Nebraska-Lincoln’s (UNL) Extreme Light Laboratory (ELL), and included multiple scientists from the ELL and Shanghai Jiao Tong University.

Further Reading: Nebraska Today, Physical Review Letters

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

4 hours ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

20 hours ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

21 hours ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

21 hours ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

2 days ago

Will We Know if TRAPPIST-1e has Life?

The search for extrasolar planets is currently undergoing a seismic shift. With the deployment of…

2 days ago