Skywatching

Catch Comet C/2017 S3 PanSTARRS in Outburst

Comet C/2017 S3 PanSTARRS from July 22nd. Image credit and copyright: hodorgabor

Comets are one of those great question marks in observational astronomy. Though we can plot their orbits thanks to Newton and Kepler, just how bright they’ll be and whether or not they will fizzle or fade is always a big unknown, especially if they’re a dynamic newcomer from the Oort Cloud just visiting the inner solar system for the first time.

We had just such a surprise from a cosmic visitor over the past few weeks, as comet C/2017 S3 PanSTARRS erupted twice, brightening into binocular visibility. Discovered on December 23rd 2017 during the PanSTARRS survey based on Haleakala, Hawai’i, S3 PanSTARRS is on a long-period, hyperbolic orbit and is most likely a first time visitor to the inner solar system.

The orbital path of comet S3 PanSTARRS through the inner solar system. Credit NASA/JPL.

S3 PanSTARRS was not only rocked by two new outbursts in quick succession, but seems to have undergone a tail disconnection event just last week, leveling off its brightness at around +8 magnitude and holding. This puts it in the range of binoculars under dark skies, looking like a fuzzy globular that refuses to snap into focus as it currently glides through the constellation of Camelopardalis the Giraffe the dawn sky.

The path of comet S3 PanSTARRS through August. Credit: Starry Night.

As July closes out, the time to catch sight of Comet S3 PanSTARRS is now, before it’s lost in the Sun’s glare. From latitude 40 degrees north, the comet sits 20 degrees above the northeastern horizon, about an hour before sunrise. By August 7th however, it drops below 10 degrees altitude. From there, the comet begins to circle the Sun as seen from the Earth beginning to favor southern hemisphere observers at dawn, who may be able to track it straight through perihelion on August 16th, if its brightness holds up. From there, northern hemisphere viewers may get a second view at dawn in September, again, if its brightness holds.

The dawn path of the comet looking northeast at dawn from latitude 35 degrees north, from July 31st through the first week of August. Credit: Starry Night.

You never know when it comes to comets. Here’s a brief rundown of the celestial happenings for comet C/2017 S3 PanSTARRS:

August

3- Crosses into the constellation Gemini.

4- Passes near the bright star Castor.

5- Passes near the bright star Pollux.

7- Crosses into the constellation Cancer.

7- Passes closest to the Earth, at 0.758 Astronomical Units (AU) distant.

8- Crosses southward over the ecliptic plane.

9- Passes just 4 degrees from the Beehive cluster, M44.

11- Passes 2 degrees from the open cluster M67.

12- Passes 10.5 degrees from Sun (1st apparent close pass as seen from the Earth)

13- Crosses into the constellation Hydra.

15- Reaches maximum brightness: the comet may top +2nd magnitude in mid-August.

16- Reaches perihelion at 0.21 AU from the Sun.

18- Crosses into the constellation Sextans.

30-Crosses into the constellation Leo.

31-Crosses the ecliptic plane northward.

The projected light curve for comet S3 PanSTARRS. The black dots are actual observations. Credit Seiichi Yoshida.

September

3- passes 4 degrees from the Sun.

25- Crosses into the constellation Coma Berenices.

From there, Comet C/2017 S3 PanSTARRS drops back below 6th magnitude in September, then below 10th magnitude in October as it heads back off into the icy realms of the outer solar system.

Be sure to nab this icy interloper why you can. The quote comet hunter David Levy, “Comets are like cats… they have tails, and they do exactly what they want.”

David Dickinson

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe as he travels the world with his wife.

Recent Posts

Gaia Hit by a Micrometeoroid AND Caught in a Solar Storm

For over ten years, the ESA's Gaia Observatory has monitored the proper motion, luminosity, temperature,…

13 hours ago

Lunar Infrastructure Could Be Protected By Autonomously Building A Rock Wall

Lunar exploration equipment at any future lunar base is in danger from debris blasted toward…

1 day ago

Why is Jupiter’s Great Red Spot Shrinking? It’s Starving.

The largest storm in the Solar System is shrinking and planetary scientists think they have…

1 day ago

ESA is Building a Mission to Visit Asteroid Apophis, Joining it for its 2029 Earth Flyby

According to the ESA's Near-Earth Objects Coordination Center (NEOCC), 35,264 known asteroids regularly cross the…

2 days ago

The Most Dangerous Part of a Space Mission is Fire

Astronauts face multiple risks during space flight, such as microgravity and radiation exposure. Microgravity can…

2 days ago

Stars Can Survive Their Partner Detonating as a Supernova

When a massive star dies in a supernova explosion, it's not great news for any…

2 days ago