The Most Distant Star Ever Seen, Only 4.4 Billion Years After the Big Bang | Universe Today
Categories: AstronomyHubble

The Most Distant Star Ever Seen, Only 4.4 Billion Years After the Big Bang

In 1990, the Hubble Space Telescope was placed into Low Earth Orbit. Since then, Hubble has gone on to become the most well-known space observatory and has revealed some never-before-seen things about our Universe. Despite the subsequent deployment of several flagship telescopes – like the Kepler Space Telescope, the Chandra X-ray Observatory and the Spitzer Space TelescopeHubble is still accomplishing some amazing feats.

For instance, a team of astronomers recently used Hubble to locate the most distant star ever discovered. This hot blue star, which was located in a galaxy cluster, existed just 4.4 billion years after the Big Bang. The discovery of this star is expected to provide new insights into the formation and evolution of stars and galaxy clusters during the early Universe, as well as the nature of dark matter itself.

The discovery was made by an international team of scientists led by Patrick Kelly (of the University of Minnesota), Jose Diego (of the Instituto de Física de Cantabria in Spain) and Steven Rodney (of the University of South Carolina). Together, they observed the distant star in the galaxy cluster MACS J1149-2223 in April 2016 while studying the supernova explosion known as heic1525 (aka. Refsdal).

Using a technique known as gravitational microlensing, team relied on the total mass of the galaxy cluster itself to magnify the light coming from the supernova. However, while looking for this supernova, the team found an unexpected point source of light in the same galaxy. As Patrick Kelly explained in a recent Hubble press release:

“Like the Refsdal supernova explosion the light of this distant star got magnified, making it visible for Hubble. This star is at least 100 times farther away than the next individual star we can study, except for supernova explosions.”

The light observed from this star – named Lensed Star 1 (LS1) – was emitted just 4.4 billion years after the Big Bang (when the Universe was just 30% of its current age). The light was only detectable thanks to the microlensing effect caused by mass of the galaxy cluster and a compact object about three times the mass of our Sun within the galaxy itself. This allowed for the light coming from the star to be magnified by a factor of 2000.

Interestingly enough, the team also realized that this was not the first time this star had been observed. During a previous observation of the galaxy cluster, made in October 2016, the star was also acquired in an image – but went unnoticed at the time. As Diego noted:

“We were actually surprised to not have seen this second image in earlier observations, as also the galaxy the star is located in can be seen twice. We assume that the light from the second image has been deflected by another moving massive object for a long time — basically hiding the image from us. And only when the massive object moved out of the line of sight the second image of the star became visible.”

After finding the star in their survey, the team used Hubble again to obtain spectra from LS1 and determined that it is a B-type supergiant star – an extremely bright and blue class of star that has several times the mass of our Sun and is more than twice as hot. Given the star’s age, the discovery of LS1 is find on its own. At the same time, the discovery of this star will allow astronomers to gain new insights into the galaxy cluster itself.

As Steven Rodney indicated, “We know that the microlensing was caused by either a star, a neutron star, or a stellar-mass black hole.” As such, the discovery of LS1 will allow astronomers to study these objects (the latter of which are invisible) and estimate how many of them exist within this galaxy cluster.

Learning more about the constituents of galaxy clusters – the largest and most massive structures in the Universe – will also provide important clues about the composition of the Universe overall and how it evolved over time. This includes the important role played by dark matter in the evolution the Universe. As Kelly explained:

“If dark matter is at least partially made up of comparatively low-mass black holes, as it was recently proposed, we should be able to see this in the light curve of LS1. Our observations do not favour the possibility that a high fraction of dark matter is made of these primordial black holes with about 30 times the mass of the Sun.”

With the deployment of next-generation telescopes – like the James Webb Space Telescope – astronomers hope to learn even more about the earliest stars in the Universe. In so doing, they will be able to learn more about how it evolved over the past 10 billion years or so, and gain vital clues as to how dark matter played a role. In the meantime, Hubble still plays an all-important role in expanding our understanding of the cosmos.

And be sure to enjoy this episode of Hubblecast that explains this impressive find, courtesy of the ESA:

Further Reading: Hubble Space Telescope

Matt Williams @

Matt Williams is the Curator of Universe Today's Guide to Space. He is also a freelance writer, a science fiction author and a Taekwon-Do instructor. He lives with his family on Vancouver Island in beautiful British Columbia.

View Comments

  • GN-z11 is a high-redshift galaxy found in the constellation Ursa Major. GN-z11 is currently the oldest and most distant known galaxy in the observable universe. GN-z11 has a spectroscopic redshift of z = 11.09, which corresponds to a proper distance of approximately 32 billion light-years (9.8 billion parsecs).
    Now what I do not understand is that this star LS1 is not so old. Then howcome it is the oldest star observed?

Recent Posts

Seriously, Life Really Does Get Around. It was Found in Rocks Deep Beneath the Seafloor

After a lot of hard work spanning many years, a team of scientists have discovered something surprising. They've found abundant…

19 hours ago

Study Finds Bizarre Exoplanet Orbits for Binary Stars

There’s an iconic scene in the original Star Wars movie where Luke Skywalker looks out over the desert landscape of…

1 day ago

WFIRST Will Use Relativity to Find More Exoplanets!

When it deploys in 2025, NASA's WFIRST mission will rely on the gravitational microlensing technique to locate exoplanets near the…

2 days ago

Astronomers Watched a Star System Die

About 570 light years from Earth lies WD 1145+017, a white dwarf star. In many respects it's a typical white…

2 days ago

How the World’s Biggest Radio Telescope Could be Used to Search for Aliens

In the coming years, China's FAST radio telescope could join in the hunt for extraterrestrials thanks to a partnership with…

2 days ago

Decaying Dark Matter Should be Visible Here in the Milky Way as a Halo Around the Galaxy

Astronomers are very sure that dark matter exists, but they're not sure at all what it's made of. The problem…

2 days ago