Radio Astronomy

Extraterrestrial Origin Of Fast Radio Burst Phenomenon Confirmed

Fast Radio Bursts (FRBs) have puzzled astronomers since they were first detected in 2007. These mysterious milliseconds-long blasts of radio waves appear to be coming from long distances, and have been attributed to various things such as alien signals or extraterrestrial propulsion systems, and more ‘mundane’ objects such as extragalactic neutron stars. Some scientists even suggested they were some type of ‘local’ source, such as atmospheric phenomena on Earth, tricking astronomers about their possible distant origins.

So far, less than two dozen FRBs have been detected in a decade. But now researchers from the Australian National University and Swinburne University of Technology have detected three of these mystery bursts in just six months using the interferometry capabilities of the Molonglo Observatory Synthesis Telescope (MOST) in Canberra, Australia. In doing so, they were able to confirm that these FRBs really do come from outer space.

“Figuring out where the bursts come from is the key to understanding what makes them,” said Manisha Caleb, a PhD candidate at ANU, and lead author of a new paper. “While only one burst has been linked to a specific galaxy we expect Molonglo will do this for many more bursts.”

The unique long and narrow configuration of MOST provides a huge collecting area of about 18,000 square meters for a very large field of view, about 8 square degrees of the sky. In an effort to boost the capabilities of this telescope for hunting for the elusive FRBs, MOST has been upgraded and reconfigured, with the ultimate goal of localizing the bursts down to an individual galaxy.

Caleb produced software to sift through the 1,000 terabytes of data produced by MOST each day, and that allowed her and her team to make the three new FRB discoveries.

They determined the three new FRBs really were from space because the events were well beyond the 10,000 km near-field limit of the telescope, which ruled out local (terrestrial) sources of interference as a possible origin.

Caleb and her team wrote in their paper that they also demonstrated with pulsars that a repeating FRB seen with MOST has the potential to be localized quite precisely, which is “an exciting prospect for identifying the host,” they wrote.

Gemini composite image of the field around FRB 121102, the only repeating FRB discovered so far. Credit: Gemini Observatory/AURA/NSF/NRC.

So far, however, just one FRB has repeated, and although Caleb and her team were able to observe the area of each of the new FRBs for several hours, (105 hours following FRB 160317, 43 hours on FRB 160410 and 35 hours on FRB 160608) they found that “no repeat pulses were found from any of the FRB positions.”

But with the nature and source of these FRBs still being highly debated, the capabilities of MOST and an Australian collaboration called BURST provides the most promising hope for determining what FRBs truly are. The BURST project will perform deep FRB searches with MOSTS’s wide field-of-view and nearly constant single pulse searches of the radio sky. You can read more about the project here.

Read the team’s paper: The first interferometric detections of Fast Radio Bursts
Press release from Swinburne

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

12 hours ago

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

Few things in life are certain. But it seems highly probable that people will explore…

14 hours ago

This is an Actual Picture of Space Debris

Space debris is a growing problem, so companies are working on ways to mitigate it.…

14 hours ago

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

1 day ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

2 days ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

2 days ago