First Experiment Starts in ISS Columbus Module Testing Plant Growth

The brand new ESA Columbus Module installed on the International Space Station (ISS) by the STS-122 crew last week is beginning a first run of biological experiments. This first experiment tests the reaction of root growth in different gravitational states. Of particular interest is how the roots of seeds develop in space when compared to terrestrial conditions. This has obvious applications for growing plants in space, underpinning agricultural science in some of the most extreme and challenging environments man will experience.

Today saw the first ever experiment on the ESA Columbus Module on board the ISS. European astronaut Léopold Eyharts activated the Waving and Coiling of Arabidopsis Roots at Different g-levels (WAICO) experiment, comparing two types of arabidopsis seed (one wild and one genetically modified) in gravity conditions from zero to one Earth gravity (or 1G). The arabidopsis seed is derived from the arabidopsis thaliana plant which copes very well in restricted space and thrives in hostile surroundings.

The WAICO experiment will last for 10 to 15 days and the sprouted seeds will be returned by the STS-123 Space Shuttle mission due for launch on March 11th so the results can be analysed. Throughout the experiment, using the brand new “Biolab” equipment (pictured), the advanced telemetry of the Columbus Module will relay real-time video of seed development to ESA scientists in Germany.

The development of the root growth will be scrutinized; especially the amount of “waving” and “coiling” that occurs as a reaction to different gravity conditions. These experiments will also help terrestrial farming methods, giving farmers the opportunity to optimize plant growing conditions.

Source: ESA

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

4 hours ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

17 hours ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

23 hours ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

1 day ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

2 days ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

2 days ago