The “Astronomical Unit” May Need an Upgrade as the Sun Loses Mass

The Sun is constantly losing mass. Our closest star is shedding material through the solar wind, coronal mass ejections and by simply generating light. As the burning giant begins a new solar cycle, it continues to lose about 6 billion kilograms (that’s approximately 16 Empire State Building’s worth) of mass per second. This may seem like a lot, but when compared with the total mass of the Sun (of nearly 2×1030 kilograms), this rate of mass loss is miniscule. However small the mass loss, the mass of the Sun is not constant. So, when using the Astronomical Unit (AU), problems will begin to surface in astronomical calculations as this “universal constant” is based on the mass of the Sun…

The AU is commonly used to describe distances within the Solar System. For instance, one AU is approximately the mean distance from the Sun to Earth orbit (defined as 149,597,870.691 kilometres). Mars has an average orbit of 1.5AU, Mercury has an average of about 0.4AU… But how is the distance of one AU defined? Most commonly thought to be derived as the mean distance of the Sun-Earth orbit, it is actually officially defined as: the radius of an unperturbed circular orbit that a massless body would revolve about the Sun in 2Ï€/k days (that’s one year). There lies the problem. The official calculation is based on “k”, a constant based on the estimated constant mass of the Sun. But the mass of the Sun ain’t constant.

As mass is lost via the solar wind and radiation (radiation energy will carry mass from the Sun due to the energy-mass relationship defined by Einstein’s E=mc2), the value of the Astronomical Unit will increase, and by its definition, the orbit of the planets should also increase. It has been calculated that Mercury will lag behind it’s current orbital position in 200 years time by 5.5 km if we continue to use today’s AU in future calculations. Although a tiny number – astrophysicists are unlikely to lose any sleep over the discrepancy – a universal constant should be just that, constant. There are now calls to correct for this gradual increase in the value of the AU by discarding it all together.

[The current definition is] fine for first-year science courses. But for scientific and engineering usage, it is essential to get it right.” – Peter Noerdlinger, astronomer at St Mary’s University, Canada.

Correcting classical “constants” in physics is essential when high accuracy is required to calculate quantities over massive distances or long periods of time, therefore the AU (as it is currently defined) may be demoted as a general description of distance rather than a standard scientific unit.

Source: New Scientist

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Psyche is Still Sending Data Home at Broadband Speeds

When I heard about this I felt an amused twinge of envy. Over the last…

12 hours ago

Uh oh. Hubble's Having Gyro Problems Again

The Hubble Space Telescope has gone through its share of gyroscopes in its 34-year history…

18 hours ago

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

2 days ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

3 days ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

3 days ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

3 days ago