Categories: Astronomy

Hubble Sees a Double Einstein Ring

An Einstein Ring happens when two galaxies are perfectly aligned. The closer galaxy acts as a lens, magnifying and distorting the view of a more distant galaxy. But today astronomers announced that they’ve discovered a double Einstein Ring: three galaxies are perfectly aligned, creating a double ring around the lensing galaxy. The odds of finding something like this are pretty low. And yet… here it is.

The double Einstein Ring image was captured by the Hubble Space Telescope, and shows a central galaxy surrounding by an almost complete ring, with another fainter ring around that. Think of a bull’s-eye.

It was found by an international team of astronomers led by Raphael Gavazzi and Tommaso Treu of the University of California, Santa Barbara, and the results were presented at the 211th meeting of the American Astronomical Society in Austin, Texas.

Treu was pretty excited, “the twin rings were clearly visible in the Hubble image. When I first saw it I said ‘wow, this is insane!’ I could not believe it!”

Here’s how it works. As Einstein predicted, gravity has the power to bend light. So instead of traveling on a straight curve, light that passes close to a large mass is pulled into a curved path. When you have a foreground galaxy perfectly lined up with a background galaxy, the light from the more distant galaxy is distorted into a ring of light.

Although the background galaxy is distorted, it’s also tremendously magnified, allowing astronomers to use the foreground galaxy as a natural telescope to peer much more deeply into the Universe than they would be able to see normally.

In the case of this double ring, the foreground galaxy is 3 billion light-years away. The background galaxy that forms the first ring is 6 billion light-years away, and the second background galaxy is 11 billion-light years away. This means that the background galaxy is being seen when the Universe was less than 3 billion years old.

The alignment also allowed astronomers to measure the mass of the middle galaxy to 1 billion solar masses. This is the first time the mass of a dwarf galaxy has been measured at this kind of distance.

Original Source: Hubble News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

17 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

20 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

20 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

1 day ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

1 day ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago