Categories: AsteroidsJAXAMissions

Japan Successfully Launches Hayabusa 2 Asteroid Sample Return Mission

Japan successfully launched their Hayabusa-2 sample return mission to asteroid 1999 JU3, and JAXA reports the spacecraft is on course and in excellent shape, with its solar panels deployed. The H-IIA F26 rocket carrying the craft blasted off from the Tanegashima Space Center in southwest Japan at 1:22:04 p.m. local time on Dec 3, 2014 (04:22 UTC) , and about two hours later, the spacecraft separated from the rocket and entered its initial planned trajectory.

Hayabusa 2 has been communicating with JAXA mission control as it starts off on its journey to land on an asteroid in 2018 and retrieve rock and dust samples to be returned to Earth in late 2020.

The first Hayabusa spacecraft completed a successful — albeit nail-biting — mission to the asteroid Itokawa, returning samples to Earth in 2010 after first reaching the asteroid in 2005. The mission almost failed as the spacecraft was plagued by technical problems and it wasn’t certain if the mechanism used to capture the samples actually worked. Ultimately, after a circuitous and troubled-filled return trip home, the canister containing microscopic rock samples made a soft landing in Australia, the first time that samples from an asteroid had been brought back to Earth for study.

Hayabusa 2’s target, Asteroid 1999 JU3 is approximately 914 meters (3,000 feet) in diameter, a little larger than Itokawa, and is roughly spherical in shape, while Itokawa had an oblong shape. 1999 JU3 has a rotation period of approximately 7.6 hours.

To avoid a repetition of the glitches experienced by the first Hayabusa spacecraft, JAXA made several changes. Hayabusa 2 has an updated ion propulsion engine as well as improved guidance and navigation systems, new antennas and a new altitude control system.

Hayabusa 2 has a mini rover called Minerva 2, and for Hayabusa 2’s sample-collecting activities, a slowly descending impactor will be used, detonating upon contact with the surface instead of the high-speed projectile used by the first Hayabusa.

This video explains the Hayabusa 2 mission and how it differs from the first Hayabusa spacecraft:

JAXA’s Hayabusa website will provide current updates to the mission.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Second Generation Starlinks are 32 Times Brighter in Radio Wavelengths

Global internet access does seem like a worthy enterprise yet the rise of satellite megaconstellations…

2 hours ago

There’s Water All Over the Moon

When you look at the Moon, you don't see any water on its surface. That…

4 hours ago

Io’s Volcanoes are Windows into its Hot Interior

NASA's Juno spacecraft was sent to Jupiter to study the gas giant. But its mission…

5 hours ago

Could Stars Hotter Than the Sun Still Support Life?

Astronomers have several classifications for stars: the Sun is a G-type star. As you go…

10 hours ago

Slime Mold Can Teach Us About the Cosmic Web

Computers truly are wonderful things and powerful but only if they are programmed by a…

1 day ago

Plants Would Still Grow Well Under Alien Skies

Photosynthesis changed Earth in powerful ways. When photosynthetic organisms appeared, it led to the Great…

1 day ago