Categories: Astronomy

Hubble Spots the Ghostly Light From Dead Galaxies

In a patch of sky 3.5 billion light-years away there are hazy elliptical galaxies, colorful spirals, blue arcs and distorted shapes seen clumping together. It’s the result of a vast cosmic collision that took place over the course of 350 million years.

The mess is a treasure trove of information for astronomers, allowing them to piece together the history of a cosmic pile-up of multiple galaxy clusters.

But now astronomers are digging through the nearby darkness. They’re eyeing the remnant stars that were cast adrift in intergalactic space. These stars should emit a faint glow known as intracluster light that — until now — has mostly remained a subject of speculation.

Mireia Montes and Ignacio Trujillo, both from the University of La Laguna, Spain, have used the Hubble Space Telescope to observe the aforementioned cluster, Abel 2744, in exquisite detail. The cluster has already earned the nickname Pandora’s Cluster for its violent past.

The team looked at both visible and near-infrared color images of the cluster, and then split these color images by brightness. This allowed Montes and Trujillo to pinpoint the color of the cluster’s faintest glow and therefore glean the ghost stars’ age, chemical content, and total mass.

Compared to stars within the cluster’s galaxies, the ghost stars emit bluer light and are therefore rich in heavier elements like oxygen, carbon, and nitrogen. So the scattered stars must be second- or third-generation stars enriched by previous supernovae. But they’re still between three and nine billion years younger than the stars within the cluster’s galaxies.

The team estimates that the combined light of about 100 billion outcast stars contributes approximately six percent of the cluster’s brightness.

But how did the stars get thrown from their respective galaxies in the first place? This new forensic evidence suggests that violent collisions tore apart between four and six Milky Way-size galaxies, scattering their stars into intergalactic space.

“The Hubble data revealing the ghost light are important steps forward in understanding the evolution of galaxy clusters,” said Trujillo in a news release. “It is also amazingly beautiful in that we found the telltale glow by utilizing Hubble’s unique capabilities.”

Abell 2744 is only one target in Hubble’s Frontier Fields program, which will map five more galaxy clusters in superb detail.

The results have been published in the Astrophysical Journal and are available online.

Shannon Hall

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.

Recent Posts

The Historic Discussion of Ptolemy’s Star Catalog

From the time of its writing in the 2nd century CE, Claudius Ptolemy’s Almagest stood…

2 hours ago

The First Stars May Have Weighed More Than 100,000 Suns

The universe was simply different when it was younger. Recently astronomers have discovered that complex…

3 hours ago

Drag Sail Success! This Satellite Won't Turn Into Space Junk

The European Space Agency successfully tested a solar-sail-type device to speed up the deorbit time…

3 hours ago

Good News! Webb is Fully Operational Again

The James Webb Space Telescope is back to full science operations. One of the telescope’s…

6 hours ago

Soon Every Spacecraft can Navigate the Solar System Autonomously Using Pulsars

If you want to know where you are in space, you’d better bring along a…

16 hours ago

Astronomers Come Closer to Understanding How Mercury Formed

Simulations of the formation of the solar system have been largely successful. They are able…

17 hours ago