Categories: Astronomy

Kapow! Keck Confirms Puzzling Element of Big Bang Theory

Observations of the kaboom that built our universe — known as the Big Bang — is better matching up with theory thanks to new work released from one of the twin 33-foot (10-meter) W.M. Keck Observatory telescopes in Hawaii.

For two decades, scientists were puzzled at a lithium isotope discrepancy observed in the oldest stars in our universe, which formed close to the Big Bang’s occurrence about 13.8 billion years ago. Li-6 was about 200 times more than predicted, and there was 3-5 times less Li-7 — if you go by astronomical theory of the Big Bang.

The fresh work, however, showed that these past observations came up with the strange numbers due to lower-quality data that, in its simplifications, created more lithium isotopes detections than are actually present. Keck’s observations found no discrepancy.

Artist’s conception of a metal-poor star. Astronomers modelled a portion of its surface to figure out its abundance of lithium-6, an element that was previously in discrepancy between Big Bang theory and observations of old stars. Credit: Karin Lind, Davide De Martin.

“Understanding the birth of our universe is pivotal for the understanding of the later formation of all its constituents, ourselves included,” stated lead researcher Karin Lind, who was with the Max Planck Institute for Astrophysics in Munich when the work was performed.

“The Big Bang model sets the initial conditions for structure formation and explains our presence in an expanding universe dominated by dark matter and energy,” added Lind, who is now with the University of Cambridge.

To be sure, it is difficult to measure lithium-6 and lithium-7 because their spectroscopic “signatures” are pretty hard to see. It takes a large telescope to be able to do it. Also, modelling the data can lead to accidental detections of lithium because some of the processes within these old stars appear similar to a lithium signature.

Keck used a high-resolution spectrometer to get the images and gazed at each star for several hours to ensure astronomers got all the photons it needed to do analysis. Modelling the data took several more weeks of work on a supercomputer.

The research appeared in the June 2013 edition of Astronomy & Astrophysics. You can check out the entire paper here.

Source: Keck Observatory

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

More Views of the 2024 Eclipse, from the Moon and Earth Orbit

It's been just over a week since millions of people flocked to places across North…

5 hours ago

Baby Stars Discharge “Sneezes” of Gas and Dust

I’m really not sure what to call it but a ‘dusty sneeze’ is probably as…

9 hours ago

How Did Pluto Get Its Heart? Scientists Suggest an Answer

The most recognizable feature on Pluto is its "heart," a relatively bright valentine-shaped area known…

11 hours ago

The Milky Way’s Role in Ancient Egyptian Mythology

Look through the names and origins of the constellations and you will soon realise that…

11 hours ago

You Can't Know the True Size of an Exoplanet Without Knowing its Star's Magnetic Field

In 2011, astronomers with the Wide Angle Search for Planets (WASP) consortium detected a gas…

16 hours ago

Stellar Winds Coming From Other Stars Measured for the First Time

An international research team led by the University of Vienna has made a major breakthrough.…

2 days ago