HiRISE Spots Curiosity Rover and Tracks from Orbit

Tracks from the Curiosity rover are visible from orbit to the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona.

Amazing, the things a birds-eye view allows you to see. Here’s a color image from the HiRISE camera on board the Mars Reconnaissance Orbiter showing the tracks of the Curiosity rover. In this most recent HiRISE image of the MSL rover, the tracks are visible from Yellowknife Bay to its location on 11 December 2013, several kilometers to the southwest. Even though some of these tracks are more than a year old, they are still visible.

As HiRISE team member Christian Schaller said via Twitter, “Take only pictures; leave only footprints.” In this case, HiRISE took the pictures while MSL left the footprints!

HiRISE principal investigator Alfred McEwen explained the image: “Curiosity is progressing from the bright dust-covered area to a region with a darker surface, where saltating sand keeps the surface relatively free of dust. The scenery seen by the rover will be getting more interesting as it progresses toward Mount Sharp.”

See a black and white image below, where you can actually see Curiosity, too:

Can you spot the Curiosity rover from orbit? Credit: NASA/JPL/University of Arizona.
Can you spot the Curiosity rover from orbit? Credit: NASA/JPL/University of Arizona.

See more details on these images, as well as get access to higher resolution versions at the HiRISE website. You can see a collection of images of Curiosity taken by HiRISE here.

Spirit Retrospective: Top Shots on 10th Year Since Mars Touchdown

A Moment Frozen in Time On May 19th, 2005, NASA's Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars. This Panoramic Camera (Pancam) mosaic was taken around 6:07 in the evening of Sol 489. The terrain in the foreground is the rock outcrop "Jibsheet," a feature that Spirit has been investigating for several weeks (rover tracks are dimly visible leading up to "Jibsheet"). The floor of Gusev crater is visible in the distance, and the Sun is setting behind the wall of Gusev some 80 km (50 miles) in the distance. Credit: NASA/JPL-Caltech/Texas A&M/Cornell

A Moment Frozen in Time
On May 19th, 2005, NASA’s Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars. This Panoramic Camera (Pancam) mosaic was taken around 6:07 in the evening of Sol 489. The terrain in the foreground is the rock outcrop “Jibsheet,” a feature that Spirit has been investigating for several weeks (rover tracks are dimly visible leading up to “Jibsheet”). The floor of Gusev crater is visible in the distance, and the Sun is setting behind the wall of Gusev some 80 km (50 miles) in the distance.
Credit: NASA/JPL-Caltech/Texas A&M/Cornell
See photo gallery below[/caption]

Today it’s hard to imagine a Mars without Spirit.

But a decade ago, NASA’s six wheeled Spirit rover was but a promise of great things to come. And her rich Martian scientific heritage we know today was but a dream yet to ensue

Jan. 3 marks the 10th anniversary since her touchdown on Mars on Jan. 3, 2004. Her twin sister Opportunity soft landed 3 weeks later on Jan. 24, 2004.

So here’s a collection of some of Spirit’s greatest hits on the Red Planet for all to enjoy and remember her fabulous exploits.

Read my detailed new overview marking ‘Spirits 10 Years on Mars’ – here – with even more spectacular Red Planet imagery!

Empty Nest. Spirit rover images her Lander Platform after egress following touchdown in January 2004.  Lander had 3-petals and airbags. Credit: NASA/JPL-Caltech/Cornell
Empty Nest. Spirit rover images her Lander Platform after egress following touchdown in January 2004. Lander had 3-petals and airbags. Credit: NASA/JPL-Caltech/Cornell

Since the golf cart sized Spirit snapped over 128,000 raw images, drove 4.8 miles and ground into 15 rock targets we can’t show everything.

Here’s a retrospective of some of our favorites.

In this selfie, Spirit shows her solar panels gleaming in the Martian sunlight and carrying only a thin veneer of dust two years after the rover landed and began exploring the red planet. Spirit's panoramic camera took this mosaic of images on Sol 586 (Aug. 27, 2005), as part of a mammoth undertaking. The vertical projection used here produces the best view of the rover deck itself, though it distorts the ground and antennas somewhat. This image is an approximate true-color rendering that combines images taken through the camera's 600-nanometer, 530-nanometer and 480-nanometer filters. Credit: NASA/JPL-Caltech/Cornell
In this selfie, Spirit shows her solar panels gleaming in the Martian sunlight and carrying only a thin veneer of dust two years after the rover landed and began exploring the red planet. Spirit’s panoramic camera took this mosaic of images on Sol 586 (Aug. 27, 2005), as part of a mammoth undertaking. The vertical projection used here produces the best view of the rover deck itself, though it distorts the ground and antennas somewhat. This image is an approximate true-color rendering that combines images taken through the camera’s 600-nanometer, 530-nanometer and 480-nanometer filters. Credit: NASA/JPL-Caltech/Cornell

During her more than six year lifetime spanning until March 2010, Spirit discovered compelling evidence that ancient Mars exhibited hydrothermal activity, hot springs and volcanic explosions flowing with water.

“Spirit’s big scientific accomplishments are the silica deposits at Home Plate, the carbonates at Comanche, and all the evidence for hydrothermal systems and explosive volcanism, Rover Principal Investigator Steve Squyres of Cornell University, explained to me in an earlier interview.

“What we’ve learned is that early Mars at Spirit’s site was a hot, violent place, with hot springs, steam vents, and volcanic explosions. It was extraordinarily different from the Mars of today.”

Meanwhile, NASA’s new Curiosity rover just celebrated 500 Sols on Mars and is speeding towards Mount Sharp from inside Gale Crater – which is about the same size as Gusev crater.

Stay tuned here for Ken’s continuing Mars rover, Curiosity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM and more news.

Ken Kremer

The "Columbia Hills" in Gusev Crater on Mars. "Husband Hill" is 3.1 kilometers distant. Spirit took this mosaic of images with the panoramic camera at the beginning of February, 2004, less than a month after landing on Mars.  Spirit soon drove to the Columbia Hills and climbed to the summit of Husband Hill.  Credit: NASA/JPL-Caltech/Cornell
The “Columbia Hills” in Gusev Crater on Mars. “Husband Hill” is 3.1 kilometers distant. Spirit took this mosaic of images with the panoramic camera at the beginning of February, 2004, less than a month after landing on Mars. Spirit soon drove to the Columbia Hills and climbed to the summit of Husband Hill. Credit: NASA/JPL-Caltech/Cornell
Summit Panorama with Rover Deck  The panoramic camera on Spirit took the hundreds of images combined into this 360-degree view, the "Husband Hill Summit" panorama. The images were acquired on Spirit's sols 583 to 586 (Aug. 24 to 27, 2005), shortly after the rover reached the crest of "Husband Hill" inside Mars' Gusev Crater. The panoramic camera shot 653 separate images in 6 different filters, encompassing the rover's deck and the full 360 degrees of surface rocks and soils visible to the camera from this position. This was the first time the camera has been used to image the entire rover deck and visible surface from the same position. Credit: NASA/JPL-Caltech/Cornell
Summit Panorama with Rover Deck The panoramic camera on Spirit took the hundreds of images combined into this 360-degree view, the “Husband Hill Summit” panorama. The images were acquired on Spirit’s sols 583 to 586 (Aug. 24 to 27, 2005), shortly after the rover reached the crest of “Husband Hill” inside Mars’ Gusev Crater. The panoramic camera shot 653 separate images in 6 different filters, encompassing the rover’s deck and the full 360 degrees of surface rocks and soils visible to the camera from this position. This was the first time the camera has been used to image the entire rover deck and visible surface from the same position. Credit: NASA/JPL-Caltech/Cornell
Carbonate-Containing Martian Rocks discovered by Spirit Mars Rover.  Spirit collected data in late 2005 which confirmed that the Comanche outcrop contains magnesium iron carbonate, a mineral indicating the past environment was wet and non-acidic, possibly favorable to life. This view was captured during Sol 689 on Mars (Dec. 11, 2005). The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University
Carbonate-Containing Martian Rocks discovered by Spirit Mars Rover. Spirit collected data in late 2005 which confirmed that the Comanche outcrop contains magnesium iron carbonate, a mineral indicating the past environment was wet and non-acidic, possibly favorable to life. This view was captured during Sol 689 on Mars (Dec. 11, 2005). The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers’ earlier finds. Credit: NASA/JPL-Caltech/Cornell University
Everest Panorama from Husband Hill summit. It took Spirit three days, sols 620 to 622 (Oct. 1 to Oct. 3, 2005), to acquire all the images combined into this mosaic, called the "Everest Panorama". Credit: NASA/JPL-Caltech/Cornell University
Everest Panorama from Husband Hill summit. It took Spirit three days, sols 620 to 622 (Oct. 1 to Oct. 3, 2005), to acquire all the images combined into this mosaic, called the “Everest Panorama”. Credit: NASA/JPL-Caltech/Cornell University
Spirit Mars rover - view from Husband Hill summit. Spirit snapped this unique self portrait view from the summit of Husband Hill inside Gusev crater on Sol 618 on 28 September 2005.  The rovers were never designed or intended to climb mountains. It took more than 1 year for Spirit to scale the Martian mountain.  This image was created from numerous raw images by an international team of astronomy enthusiasts and appeared on the cover of the 14 November 2005 issue of Aviation Week & Space Technology magazine and the April 2006 issue of Spaceflight magazine.  Also selected by Astronomy Picture of the Day (APOD) on 28 November 2005. Credit: NASA/JPL/Cornell/ Marco Di Lorenzo/Doug Ellison/Bernhard Braun/Ken Kremer
Spirit Mars rover – view from Husband Hill summit. Spirit snapped this unique self portrait view from the summit of Husband Hill inside Gusev crater on Sol 618 on 28 September 2005. The rovers were never designed or intended to climb mountains. It took more than 1 year for Spirit to scale the Martian mountain. This image was created from numerous raw images by an international team of astronomy enthusiasts and appeared on the cover of the 14 November 2005 issue of Aviation Week & Space Technology magazine and the April 2006 issue of Spaceflight magazine. Also selected by Astronomy Picture of the Day (APOD) on 28 November 2005. Credit: NASA/JPL/Cornell/ Marco Di Lorenzo/Doug Ellison/Bernhard Braun/Ken Kremer-kenkremer.com
'Calypso' Panorama of Spirit's View from 'Troy'. This full-circle view from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit shows the terrain surrounding the location called "Troy," where Spirit became embedded in soft soil during the spring of 2009. The hundreds of images combined into this view were taken beginning on the 1,906th Martian day (or sol) of Spirit's mission on Mars (May 14, 2009) and ending on Sol 1943 (June 20, 2009). Credit: NASA/JPL-Caltech/Cornell University
‘Calypso’ Panorama of Spirit’s View from ‘Troy’. This full-circle view from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Spirit shows the terrain surrounding the location called “Troy,” where Spirit became embedded in soft soil during the spring of 2009. The hundreds of images combined into this view were taken beginning on the 1,906th Martian day (or sol) of Spirit’s mission on Mars (May 14, 2009) and ending on Sol 1943 (June 20, 2009). Credit: NASA/JPL-Caltech/Cornell University
Spirit examined spectacular layered rocks exposed at "Home Plate." The rover has drove around the northern and eastern edges of Home Plate. Before departing, Spirit took this image showing some of the most complex layering patterns seen so far at this location. Scientists suspect that the rocks at Home Plate were formed in the aftermath of a volcanic explosion or impact event, and they are investigating the possibility that wind may also have played a role in redistributing materials after such an event. Credit: NASA/JPL-Caltech/Cornell
Spirit examined spectacular layered rocks exposed at “Home Plate.” The rover has drove around the northern and eastern edges of Home Plate. Before departing, Spirit took this image showing some of the most complex layering patterns seen so far at this location. Scientists suspect that the rocks at Home Plate were formed in the aftermath of a volcanic explosion or impact event, and they are investigating the possibility that wind may also have played a role in redistributing materials after such an event. Credit: NASA/JPL-Caltech/Cornell
Spirit Rover traverse map from Gusev Crater landing site to Home Plate: 2004 to 2011
Spirit Rover traverse map from Gusev Crater landing site to Home Plate: 2004 to 2011
Spirit Rover traverse map from Husband Hill to resting place at Home Plate: 2004 to 2011
Spirit Rover traverse map from Husband Hill to resting place at Home Plate: 2004 to 2011

Spirit Rover Landed on Mars 10 Years Ago Today

This bird's-eye view from August 2005 combines a self-portrait of the spacecraft deck and a panoramic mosaic of the Martian surface as viewed by NASA's Mars Exploration Rover Spirit. The rover's solar panels are still gleaming in the sunlight, having acquired only a thin veneer of dust two years after the rover landed and commenced exploring the red planet. Spirit captured this 360-degree panorama on the summit of "Husband Hill" inside Mars' Gusev Crater. During the period from Spirit's Martian days, or sols, 583 to 586 (Aug. 24 to 27, 2005), the rover's panoramic camera acquired the hundreds of individual frames for this largest panorama ever photographed by Spirit. Credit: NASA/JPL-Caltech/Cornell

Ten Years Ago, Spirit Rover Lands on Mars
This bird’s-eye view from August 2005 combines a self-portrait of the spacecraft deck and a panoramic mosaic of the Martian surface as viewed by NASA’s Mars Exploration Rover Spirit. The rover’s solar panels are still gleaming in the sunlight, having acquired only a thin veneer of dust two years after the rover landed and commenced exploring the red planet. Spirit captured this 360-degree panorama on the summit of “Husband Hill” inside Mars’ Gusev Crater. During the period from Spirit’s Martian days, or sols, 583 to 586 (Aug. 24 to 27, 2005), the rover’s panoramic camera acquired the hundreds of individual frames for this largest panorama ever photographed by Spirit. Credit: NASA/JPL-Caltech/Cornell
See Spirit’s 1st and last panoramas and more imagery below[/caption]

Today, Jan. 3, marks the 10th anniversary since the safe landing of NASA’s renowned Spirit rover on the plains of Mars on Jan. 3, 2004.

Spirit comprises one half of NASA’s now legendary pair of Mars Exploration Rovers (MER). Opportunity, her twin sister landed, on the opposite side of the Red Planet three weeks later – on Jan. 24, 2004. The goal was to “follow the water” as a potential enabler for past Martian microbes if they ever existed.

Together, the long-lived, golf cart sized robots proved that early Mars was warm and wet, billions of years ago – a key finding in the search for habitats conducive to life beyond Earth.

Exactly a decade ago, the famous robot survived the scorching atmospheric heating of the 6 minute plunge through the thin Martian atmosphere, bounced some two dozen times cocooned inside cushioning airbags, and gradually rolled to a stop inside 100 mile wide Gusev Crater. It was known as the “6 minutes of Terror”.

The three petaled landing pad opened and Spirit was dramatically born in a milestone event that will be forever remembered in the annuls of history because of the groundbreaking scientific discoveries that ensued and the unbelievable longevity of the twins.

Ten Years Ago, Spirit Rover Lands on Mars . This mosaic image taken on Jan. 4, 2004, by the navigation camera on the Mars Exploration Rover Spirit, shows a 360 degree panoramic view of the rover on the surface of Mars.   Spirit operated for more than six years after landing in January 2004 for what was planned as a three-month mission. Credit: NASA/JPL
Ten Years Ago, Spirit Rover Lands on Mars
This mosaic image taken on Jan. 4, 2004, by the navigation camera on the Mars Exploration Rover Spirit, shows a 360 degree panoramic view of the rover on the surface of Mars. Spirit operated for more than six years after landing in January 2004 for what was planned as a three-month mission. Credit: NASA/JPL

Before they were launched atop Delta II rockets in the summer of 2003 from Cape Canaveral, the dynamic, solar powered robo duo were expected to last a mere three months – with a ‘warranty’ of 90 Martian days (Sols).

Either dust accumulation on the life giving solar panels, an engineering issue or the extremely harsh Martian environment was expected to somehow terminate them mercilessly.

In reality, both robots enormously exceeded expectations and accumulated a vast bonus time of exploration and discovery in numerous extended mission phases.

'McMurdo' Panorama from Spirit's 'Winter Haven' . This beautiful scene reveals a tremendous amount of detail in Spirit's surroundings at a place called "Winter Haven," where the rover spent many months parked on a north-facing slope in order to keep its solar panels pointed toward the sun for the winter. During this time, it captured several images to create this high resolution panorama. During that time, while the rover spent the daylight hours conducting as much scientific research as possible, science team members assigned informal names to rock outcrops, boulders, and patches of soil commemorating exploration sites in Antarctica and the southernmost islands of South America. Antarctic bases are places where researchers, like the rovers on Mars, hunker down for the winter in subzero temperatures. During the past Martian winter, Spirit endured temperatures lower than minus 100 degrees Celsius (minus 148 degrees Fahrenheit). Credit: NASA/JPL/Cornell
‘McMurdo’ Panorama from Spirit’s ‘Winter Haven’
This beautiful scene reveals a tremendous amount of detail in Spirit’s surroundings at a place called “Winter Haven,” where the rover spent many months parked on a north-facing slope in order to keep its solar panels pointed toward the sun for the winter. During this time, it captured several images to create this high resolution panorama. During that time, while the rover spent the daylight hours conducting as much scientific research as possible, science team members assigned informal names to rock outcrops, boulders, and patches of soil commemorating exploration sites in Antarctica and the southernmost islands of South America. Antarctic bases are places where researchers, like the rovers on Mars, hunker down for the winter in subzero temperatures. During the past Martian winter, Spirit endured temperatures lower than minus 100 degrees Celsius (minus 148 degrees Fahrenheit). Credit: NASA/JPL/Cornell

No one foresaw that Martian winds would occasionally clean the solar panels to give them a new lease on life or that the components would miraculously continue functioning.

Spirit endured the utterly extreme Red Planet climate for more than six years until communications ceased in 2010.

Opportunity is still roving Mars today, and doing so in rather good condition!

Altogether, Spirit drove 4.8 miles (7.73 kilometers),that’s about 12 times more than the original goal set for the mission.

She transmitted over 128,000 images.

After landing in the dusty plains, she headed for the nearby Columbia Hills some 2 miles away and ultimately became the first Martian mountaineer, when she scaled Husband Hill and found evidence for the flow of liquid water at the Hillary outcrop.

Spirit acquired this mosaic on Sol 1202  (May 21, 2007), while investigating the area east of the elevated plateau known as "Home Plate" in the "Columbia Hills." The mosaic shows an area of disturbed soil, nicknamed "Gertrude Weise" by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Credit: NASA/JPL-Caltech/Cornell
Spirit acquired this mosaic on Sol 1202 (May 21, 2007), while investigating the area east of the elevated plateau known as “Home Plate” in the “Columbia Hills.” The mosaic shows an area of disturbed soil, nicknamed “Gertrude Weise” by scientists, made by Spirit’s stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Credit: NASA/JPL-Caltech/Cornell

The rovers were not designed to climb hills. But eventually she scaled 30 degree inclines.

The rover was equipped with a rock grinder named the Rock Abrasion Tool (RAT) built by Honeybee Robotics.

Spirit ground the surfaces off 15 rock targets and scoured 92 targets with a brush to prepare the targets for inspection with spectrometers and a microscopic imager, according to NASA.

Eventually she drove back down the hill and made even greater scientific discoveries in the area known as ‘Home Plate’.

Spirit survived three harsh Martian winters and only succumbed to the Antarctic-like temperatures when she unexpectedly became mired in an unseen sand trap driving beside an ancient volcanic feature named ‘Home Plate’ that prevented the solar arrays from generating life giving power to safeguard critical electronic and computer components.

In 2007, Spirit made one of the key discoveries of the mission at ‘Home Plate’ when her stuck right front wheel churned up a trench of bright Martian soil that exposed a patch of nearly pure silica, which was formed in a watery hot spring or volcanic environment.

Spirit was heading towards another pair of volcanic objects named ‘von Braun’ and ‘Goddard’ and came within just a few hundred feet when she died in the sand trap.

See Spirits last panorama below – created from raw images taken in Feb. 2010 by Marco Di Lorenzo and Ken Kremer.

Last View from Spirit rover on Mars.  Spirit’s last panorama from Gusev Crater was taken during February 2010 before her death from extremely low temperatures during her 4th Martian winter.  Spirit was just 500 feet from her next science target - dubbed Von Braun – at center, with Columbia Hills as backdrop.  Mosaic Credit: Marco Di Lorenzo/ Kenneth Kremer/ NASA/JPL/Cornell University.  Mosaic featured on Astronomy Picture of the Day (APOD) on 30 May 2011 - http://apod.nasa.gov/apod/ap110530.html
Last View from Spirit rover on Mars
Spirit’s last panorama from Gusev Crater was taken during February 2010 before her death from extremely low temperatures during her 4th Martian winter. Spirit was just 500 feet from her next science target – dubbed Von Braun – at center, with Columbia Hills as backdrop. Mosaic Credit: Marco Di Lorenzo/ Kenneth Kremer/ NASA/JPL/Cornell University. Mosaic featured on Astronomy Picture of the Day (APOD) on 30 May 2011 – http://apod.nasa.gov/apod/ap110530.html

Here’s how the rovers’ principal investigator, Steve Squyres of Cornell University, Ithaca, N.Y., described some of the key findings in a NASA statement, starting with what Spirit found after driving from the crater floor where it landed into the Columbia hills to the east:

“In the Columbia Hills, we discovered compelling evidence of an ancient Mars that was a hot, wet, violent place, with volcanic explosions, hydrothermal activity, steam vents — nothing like Mars today.

“At Opportunity’s landing site, we found evidence of an early Mars that had acidic groundwater that sometimes reached the surface and evaporated away, leaving salts behind. It was an environment with liquid water, but very different from the environment that Spirit told us about.

“When Opportunity got to the rim of Endeavour Crater, we began a whole new mission. We found gypsum veins and a rich concentration of clay minerals. The clay minerals tell us about water chemistry that was neutral, instead of acidic — more favorable for microbial life, if any ever began on Mars.”

“Because of the rovers’ longevity, we essentially got four different landing sites for the price of two.”

MER10-SpiritAndOpportunity_ByTheNumbers[1]

Meanwhile, NASA’s new Curiosity rover just celebrated 500 Sols on Mars and is speeding towards Mount Sharp from inside Gale Crater – which is about the same size as Gusev crater.

And a pair of newly launched orbiters are streaking to the Red Planet; NASA’s MAVEN and India’s MOM.

And China’s new Yutu lunar rover and Chang’e-3 lander are napping through the lunar night until mid-January.

Stay tuned here for Ken’s continuing Curiosity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, Mars rover and MOM news.

Ken Kremer

…………….

Learn more about Curiosity, MAVEN, MOM, Mars rovers, SpaceX, Orbital Sciences Antares Jan. 8 launch, and more at Ken’s upcoming presentations

Jan 6-8: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Happy New Year’s Day 2014 from Mars – Curiosity Celebrates 500 Sols Spying Towering Mount Sharp Destination

Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014. NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras, in this cropped view. See full mosaic below. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494). Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014
NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras, in this cropped view. See full mosaic below. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494).
Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Story updated[/caption]

Today, New Year’s Day 2014, NASA’s Curiosity mega rover celebrates a huge mission milestone – her 500th Martian Day on the Red Planet since the death defying touchdown of August 2012.

“500 Sols of Mars: While Earth celebrates #NewYear2014, midnight on Mars mark my 500th day of operations,” she tweeted today.

And Curiosity marked the grand occasion by snapping a fabulous new panorama spying towering Mount Sharp – looming dead ahead in her high resolution color cameras.

You can take in the magnificent Martian view Curiosity sees today – via our newly assembled mosaic of humongous Mount Sharp rising 5.5 kilometers (3.4 mi) into the Red Planets sky; see above and below.

Ascending mysterious Mount Sharp – which dominates the Gale Crater landing site – is the ultimate reason for Curiosity’s being.

Curiosity marks 500 Sols on Mars on New Year’s Day Jan. 1, 2014. Credit: NASA/JPL
Curiosity marks 500 Sols on Mars on New Year’s Day Jan. 1, 2014. Credit: NASA/JPL

NASA’s science and engineering teams dispatched the state-of-the-art robot there because they believe the lower sedimentary layers hold the clues to the time period when Mars was habitable eons ago and they possess the required chemical ingredients necessary to sustain microbial life.

But first she needs to reach the mountains foothills.

So, just like some Earthlings, Curiosity also set a New Year’s resolution she’d like to share with you all – just tweeted all the way from the Red Planet.

“Goals for 2014: Finish driving to Mars’ Mount Sharp & do all the science I can.”

Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014.  NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494).   Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014. NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494). Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Part of those goals involve shifting the missions focus to include the search for organic molecules – the building blocks of life as we know it – which may be preserved in the sedimentary rock layers.

“Really what we’re doing is turning the corner from a mission that is dedicated to the search for habitable environments to a mission that is now dedicated to the search for that subset of habitable environments which also preserves organic carbon,” Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology in Pasadena, said recently at the Dec. 2013 annual meeting of the American Geophysical Union (AGU).

The 1 ton behemoth is in the midst of an epic trek to destination Mount Sharp, roving across 10 kilometers (6 mi.) of the rather rocky crater floor of her landing site inside Gale Crater.

This illustration depicts a concept for the possible extent of an ancient lake inside Gale Crater. The existence of a lake there billions of years ago was confirmed by Curiosity from examination of mudstone in the crater's Yellowknife Bay area.  Credit: NASA/JPL-Caltech/MSSS
This illustration depicts a concept for the possible extent of an ancient lake inside Gale Crater. The existence of a lake there billions of years ago was confirmed by Curiosity from examination of mudstone in the crater’s Yellowknife Bay area. Credit: NASA/JPL-Caltech/MSSS

But the alien crater floor strewn with a plethora of sharp edged rocks is ripping significant sized holes and causing numerous dents in several of the rovers six big aluminum wheels – as outlined in my prior report; here.

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com See below complete 6 wheel mosaic and further wheel mosaics for comparison
Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

“Routes to future destinations for the mission may be charted to lessen the amount of travel over such rough terrain, compared to smoother ground nearby,” says NASA.

So far Curiosity’s odometer stands at 4.6 kilometers, following a post Christmas drive on Dec. 26, 2013 (Sol 494) after 16 months roving the Red Planet.

Curiosity’s handlers will be diligently watching the wear and tear on the 20 inch diameter wheels. She needs to rove along a smoother path forward to minimize wheel damage by sharp rocks.

Here’s our latest wheel mosaic from Dec. 26, 2013 (Sol 494) showing a several centimeter wide puncture in the left front wheel, which seems to have suffered the most damage.

The Mount Sharp and wheel mosaics were assembled by the imaging team of Marco Di Lorenzo and Ken Kremer.

Up close view of puncture in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo
Up close view of puncture in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo

“Taking stock this holiday season. I’m planning smoother paths for the new year,” Curiosity tweeted.

The team hopes the intrepid robot arrives at the base of Mount Sharp around the middle of this new year 2014, if all goes well.

Shortly thereafter the robot begins a new phase with the dramatic ascent up the chosen entryway which the team dubs the ‘Murray Buttes’ – fittingly named in honor of Bruce Murray, a Caltech planetary geologist, who worked on science teams of NASA’s earliest missions to Mars in the 1960s and ’70s.

The rocky road ahead towards the base of Mount Sharp and the Murray Buttes entry point is shown in this mosaic from Dec. 26, 2013 (Sol 494).  Curiosity needs to rove along a smoother path forward to minimize wheel damage by sharp rocks.  Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer
The rocky road ahead towards the base of Mount Sharp and the Murray Buttes entry point is shown in this mosaic from Dec. 26, 2013 (Sol 494). Curiosity needs to rove along a smoother path forward to minimize wheel damage by sharp rocks. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer

Murray also was the director of NASA’s Jet Propulsion Laboratory from 1976 to 1982 and co-founded the Planetary Society in 1980. He passed away on Aug. 29, 2013.

“Bruce Murray contributed both scientific insight and leadership that laid the groundwork for interplanetary missions such as robotic missions to Mars, including the Mars rovers, part of America’s inspirational accomplishments. It is fitting that the rover teams have chosen his name for significant landmarks on their expeditions,” said NASA Mars Exploration Program Manager Fuk Li, of NASA’s Jet Propulsion Laboratory (JPL) , Pasadena, Calif.

Curiosity has already accomplished her primary goal of discovering a habitable zone on Mars that could support Martian microbes if they ever existed.

NASA’s rover Curiosity uncovered evidence that an ancient Martian lake had the right chemical ingredients, including clay minerals that could have sustained microbial life forms for long periods of time – and that these habitable conditions persisted on the Red Planet until a more recent epoch than previously thought.

Meanwhile, NASA’s Opportunity rover is ascending Solander Point on the opposite side of Mars.

And a pair of newly launched orbiters are streaking to the Red Planet; NASA’s MAVEN and India’s MOM.

And China’s new Yutu lunar rover and Chang’e-3 lander are napping through the lunar night.

For a great compilation of the top space events in 2013- read this article.

Stay tuned here for Ken’s continuing Curiosity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, Mars rover and MOM news.

Ken Kremer

…………….

Learn more about Curiosity, MAVEN, MOM, Mars rovers, SpaceX, Orbital Sciences Antares Jan. 7 launch, and more at Ken’s upcoming presentations

Jan 6-8: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 7” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Rough Red Planet Rocks Rip Rover Curiosity Wheels

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com See below complete 6 wheel mosaic and further wheel mosaics for comparison

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
See below complete 6 wheel mosaic and further wheel mosaics for comparison
[/caption]

Rough edged rocks on the Red Planet are clearly taking their toll on rover Curiosity’s hi tech wheels as she speeds towards her ultimate goal – humongous Mount Sharp – in search of the ingredients necessary to sustain potential Martian microbes.

Several of the NASA rovers six big aluminum wheels have suffered some significant sized rips, tears and holes up to several centimeters wide – in addition to numerous dents – as she has picked up the driving pace across the rugged, rock filled Martian terrain this past fall and put over 4.5 kilometers (3 mi.) on the odometer to date.

It’s rather easy to spot the wheel damage to the 1 ton behemoth by examining the mosaic imagery we have created – See above and below – from newly transmitted raw imagery and comparing that to older imagery taken at earlier points in the mission. Check our Sol 177 wheels mosaic below.

The latest imagery from Mars captured just prior to Christmas is delivering an undesired holiday present of sorts to team members that might well cause the scientists and engineers to alter Curiosity’s extraterrestrial road trip to traverse smoother terrain and thereby minimize future harm.

So the wheel damage is certainly manageable at this point but will require attention.

The team of Marco Di Lorenzo and Ken Kremer have assembled the new Mastcam and MAHLI raw images of the wheels captured on Sol 490 (Dec. 22) into fresh color mosaics – shown herein.

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show rover’s underbelly and some recent damage to several of its six wheels - most noticeably the two at right in middle and front. Far fewer holes are visible in imagery  captured earlier in the Curiosity’s Martian traverse - see below. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com   See below more wheel mosaics for comparison
Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two at right in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
See below more wheel mosaics for comparison
Photomosaic from Sol 177 (Feb. 3, 2013) shows rover Curiosity’s six wheels relatively intact with far fewer holes and dents compared to Sol 490 mosaic taken on Dec 22. 2013.  Rover is working in Yellowknife Bay here and had not yet begun long trek to Mount Sharp. Sol 177 raw images assembled to mosaic were taken by the MAHLI camera on Curiosity’s arm.  Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Photomosaic from Sol 177 (Feb. 3, 2013) shows rover Curiosity’s six wheels relatively intact with far fewer holes and dents compared to Sol 490 mosaic taken on Dec 22. 2013. Rover is working in Yellowknife Bay here and had not yet begun long trek to Mount Sharp. Sol 177 raw images assembled to mosaic were taken by the MAHLI camera on Curiosity’s arm. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Indeed the rovers handlers have already directed the SUV sized Curiosity to snap close up images of the 20 inch diameter wheels with the high resolution color cameras located on the Mast as well as the Mars Hand Lens Imager (MAHLI) camera at the end of the rover’s maneuverable robotic arm.

“We want to take a full inventory of the condition of the wheels,” said Jim Erickson of NASA’s Jet Propulsion Laboratory, project manager for the NASA Mars Science Laboratory Project, in a NASA statement.

Up close view of hole in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo
Up close view of hole in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo

The rover team certainly expected some wear and tear to accumulate along the rock strewn path to the base of Mount Sharp – which reaches 5.5 km (3.4 mi) into the Martian sky.

But the volume of sharp edged rocks encountered in the momentous trek across the floor of Curiosity’s Gale Crater landing site apparently has picked up- as evidenced by the new pictures – and consequently caused more damage than the engineers anticipated.

“Dents and holes were anticipated, but the amount of wear appears to have accelerated in the past month or so,” Erickson noted.

“It appears to be correlated with driving over rougher terrain. The wheels can sustain significant damage without impairing the rover’s ability to drive. However, we would like to understand the impact that this terrain type has on the wheels, to help with planning future drives.”

The team is now inspecting the new imagery acquired of the wheels and will decide if a course alteration to Mount Sharp is in order.

The left front wheel may have suffered the most harm.

Up close view shows a tear in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo
Up close view shows a tear in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo

“Routes to future destinations for the mission may be charted to lessen the amount of travel over such rough terrain, compared to smoother ground nearby,” says NASA.

Following a new, post Christmas drive today, Dec. 26, 2013 (Sol 494) Curiosity’s odometer stands at 4.6 kilometers.

Curiosity has already accomplished her primary goal of discovering a habitable zone on Mars that could support Martian microbes if they ever existed.

NASA’s rover Curiosity uncovered evidence that an ancient Martian lake had the right chemical ingredients that could have sustained microbial life forms for long periods of time – and that these habitable conditions persisted on the Red Planet until a more recent epoch than previously thought.

Right now the researchers are guiding Curiosity along a 10 km (6 mi) path to the lower reaches of Mount Sharp – which they hope to reach sometime in mid 2014.

NASA's Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left.  Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
NASA’s Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

Stay tuned here for Ken’s continuing Curiosity, Chang’e-3, LADEE, MAVEN, Mars rover and MOM news.

Ken Kremer

Astronomy Cast Ep. 326: Atmospheric Dust

When you consider the hazards of spaceflight, it’s hard to get worked up about dust bunnies. And yet, atmospheric dust is going to be one of the biggest problems astronauts will face when they reach the surface of other worlds. Where does this dust come from, and what does it tell us about the history of other worlds, and what can we do to mitigate the health risks?
Continue reading “Astronomy Cast Ep. 326: Atmospheric Dust”

Mars One Proposes First Privately Funded Robotic Mars Missions – 2018 Lander & Orbiter

Mars One proposes Phoenix-like lander for first privately funded mission to the Red Planet slated to blastoff in 2018. This film solar array experiment would provide additional power. Credit: Mars One

The Mars One non-profit foundation that aims to establish a permanent human settlement on the Red Planet in the mid-2020’s – with colonists volunteering for a one-way trip – took a major step forward today, Dec. 10, when they announced plans to launch the first ever privately funded space missions to Mars in 2018; as forerunners to gather critical measurements.

Bas Lansdorp, Mars One Co-founder and CEO announced plans to launch two missions to the Red Planet in 2018 – consisting of a robotic lander and an orbiting communications satellite; essential for transmitting the data collected on the Red Planet’s surface.

And he has partnered with a pair of prestigious space companies to get started.

Lansdorp made the announcement at a news media briefing held today at the National Press Club in Washington, DC.

“This will be the first private mission to Mars and the lander’s successful arrival and operation will be a historic accomplishment,” said Lansdorp.

Lansdorp stated that Mars One has signed contracts with Lockheed Martin and Surrey Satellite Technology Ltd. (SSTL) to develop mission concept studies – both are leading aerospace companies with vast experience in building spacecraft.

The 2018 Mars One lander would be a technology demonstrator and include a scoop, cameras and an exotic solar array to boost power and longevity.

The spacecraft structure would be based on NASA’s highly successful 2007 Phoenix Mars lander – built by Lockheed Martin – which discovered and dug into water ice buried just inches beneath the topsoil in the northern polar regions of the Red Planet.

3 Footpads of Phoenix Mars Lander atop Martian Ice.  Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars InSight mission will build a new Phoenix-like lander from scratch to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute
3 Footpads of Phoenix Mars Lander atop Martian Ice
Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars One 2018 mission will build a new Phoenix-like lander from scratch to test technologies for extracting water into a useable form for future human colonists. NASA’s InSight 2016 mission will build a new Phoenix-like lander to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute

“We are excited to have been selected by Mars One for this ambitious project and we’re already working on the mission concept study, starting with the proven design of Phoenix,” said Ed Sedivy, Civil Space chief engineer at Lockheed Martin Space Systems. “Having managed the Phoenix spacecraft development, I can tell you, landing on Mars is challenging and a thrill and this is going to be a very exciting mission.”

Lockheed Martin engineers will work for the next 3 to 4 months to study mission concepts as well as how to stack the orbiter and lander on the launcher,” Sedivy said at the briefing.

“The lander will provide proof of concept for some of the technologies that are important for a permanent human settlement on Mars,” said Lansdorp.

Two examples involve experiments to extract water into a usable form and construction of a thin film solar array to provide additional power to the spacecraft and eventual human colonists.

It would include a Phoenix like scoop to collect soils for the water extraction experiment and cameras for continuous video recording transmitted by the accompanying orbiter.

Lockheed Martin is already under contract to build another Phoenix type lander for NASA that is slated to blastoff in 2016 on the InSight mission.

“They have a distinct legacy of participating in nearly every NASA mission to Mars,” said Lansdorp.

So if sufficient funding is found it seems apparent that lander construction should be accomplished in time.

However, building the science instruments from scratch to meet the tight timeline could be quite challenging.

Given that the lander is planned to launch in barely over four years, I asked Sedivy if that was sufficient time to select, design and develop the new science instruments planned for the 2018 mission.

“A typical life cycle for the Mars program provides three and a half years from commitment to design to launch. So we have about 1 year to commit to preliminary design for the 2018 launch, so that’s favorable,” Sedivy told Universe Today.

“Now as for having enough time for selecting the suite of science experiments that’s a little trickier. It depends on what’s actually selected and the maturity of those elements selected.”

“So we will provide Mars One with input as to where we see the development risks. And we’ll help guide the instrument selections to have a high probability that they will be ready in time for the 2018 launch window,” Sedivy told me.

Video caption: Mars One Crowdfunding Campaign 2018 Mars Mission

For the 2018 lander, Mars One also plans to include an experiment from a worldwide university challenge and items from several Science, Technology, Engineering and Math (STEM) challenge winners.

Surrey Satellite Technology Ltd. (SSTL) was selected to studying orbiter concepts that will provide a high bandwidth communications system in a Mars synchronous orbit and will be used to relay data and a live video feed from the lander on the surface of Mars back to Earth, according to Sir Martin Sweeting, Executive Chairman of SSTL.

There are still many unknowns at this stage including the sources for all the significant funding required by Mars One to transform their concepts into actual flight hardware.

“Crowdfunding and crowdsourcing activities are important means to do that,” said Lansdorp.

At the briefing, Lansdorp stated that Mars One has started an Indiegogo crowdfunding campaign. The goal is to raise $400,000 by Jan. 25, 2014.

Link to – Indiegogo Mars One campaign

Mars One is looking for sponsors and partners. They also plan a TV show to help select the winners of the first human crew to Mars from over 200,000 applicants from countries spread all across Earth.

The preliminary 2018 mission study contracts with Lockheed and Surrey are valued at $260,000 and $80,000 respectively.

Stay tuned here for Ken’s continuing Curiosity, Chang’e 3, LADEE, MAVEN and MOM news and his upcoming Antares launch reports from on site at NASA Wallops Flight Facility, VA.

Ken Kremer

…………….

Learn more about Mars, Curiosity, Orion, MAVEN, MOM, Mars rovers, Antares Launch, Chang’e 3, SpaceX and more at Ken’s upcoming presentations

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Dec 15-20: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA, evening

Curiosity Discovers Ancient Mars Lake Could Support Life

Outcrops in Yellowknife Bay are being exposed by wind driven erosion. These rocks record superimposed ancient lake and stream deposits that offered past environmental conditions favorable for microbial life. This image mosaic from the Mast Camera instrument on NASA's Curiosity Mars rover shows a series of sedimentary deposits in the Glenelg area of Gale Crater, from a perspective in Yellowknife Bay looking toward west-northwest. The "Cumberland" rock that the rover drilled for a sample of the Sheepbed mudstone deposit (at lower left in this scene) has been exposed at the surface for only about 80 million years. Credit: NASA/JPL-Caltech/MSSS

NASA’s Curiosity rover has discovered evidence that an ancient Martian lake had the right chemical ingredients that could have sustained microbial life forms for long periods of time – and that these habitable conditions persisted on the Red Planet until a more recent epoch than previously thought.

Furthermore researchers have developed a novel technique allowing Curiosity to accurately date Martian rocks for the first time ever – rather than having to rely on educated guesses based on counting craters.

All that and more stems from science results just announced by members of the rover science team.

Researchers outlined their remarkable findings in a series of six new scientific papers published today (Dec. 9) in the highly respected journal Science and at talks held today at the Fall 2013 Annual Meeting of the American Geophysical Union (AGU) in San Francisco.

The Curiosity team also revealed that an investigation of natural Martian erosion processes could be used to direct the rover to spots with a higher likelihood of holding preserved evidence for the building blocks of past life – if it ever existed.

View of Yellowknife Bay Formation, with Drilling Sites. This mosaic of images from Curiosity's Mast Camera (Mastcam) shows geological members of the Yellowknife Bay formation, and the sites where Curiosity drilled into the lowest-lying member, called Sheepbed, at targets "John Klein" and "Cumberland." The scene has the Sheepbed mudstone in the foreground and rises up through Gillespie Lake member to the Point Lake outcrop. These rocks record superimposed ancient lake and stream deposits that offered past environmental conditions favorable for microbial life. Rocks here were exposed about 70 million years ago by removal of overlying layers due to erosion by the wind. Credit: NASA/JPL-Caltech/MSSS
View of Yellowknife Bay Formation, with Drilling Sites
This mosaic of images from Curiosity’s Mast Camera (Mastcam) shows geological members of the Yellowknife Bay formation, and the sites where Curiosity drilled into the lowest-lying member, called Sheepbed, at targets “John Klein” and “Cumberland.” The scene has the Sheepbed mudstone in the foreground and rises up through Gillespie Lake member to the Point Lake outcrop. These rocks record superimposed ancient lake and stream deposits that offered past environmental conditions favorable for microbial life. Rocks here were exposed about 70 million years ago by removal of overlying layers due to erosion by the wind. Credit: NASA/JPL-Caltech/MSSS

The ancient fresh water lake at the Yellowknife Bay area inside the Gale Crater landing site explored earlier this year by Curiosity existed for periods spanning perhaps millions to tens of millions of years in length – before eventually evaporating completely after Mars lost its thick atmosphere.

Furthermore the lake may have existed until as recently as 3.7 Billion years ago, much later than researchers expected which means that life had a longer and better chance of gaining a foothold on the Red Planet before it was transformed into its current cold, arid state.

NASA's Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left.  Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
NASA’s Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

Researchers also announced that they are shifting the missions focus from searching for habitable environments to searching for organic molecules – the building blocks of all life as we know it.

Why the shift? Because the team believes they have found a way to increase the chance of finding organics preserved in the sedimentary rock layers.

“Really what we’re doing is turning the corner from a mission that is dedicated to the search for habitable environments to a mission that is now dedicated to the search for that subset of habitable environments which also preserves organic carbon,” Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology in Pasadena, said at an AGU press conference today.

“That’s the step we need to take as we explore for evidence of life on Mars.”

Earlier this year, Curiosity drilled into a pair of sedimentary Martian mudstone rock outcrops at Yellowknife Bay known as “John Klein” and “Cumberland” – for the first time in history.

Grotzinger said the ancient lake at Yellowknife Bay was likely about 30 miles long and 3 miles wide.

Powdered samples deposited into the rovers miniaturized chemistry labs – SAM and CheMin – revealed the presence of significant levels of phyllosilicate clay minerals.

These clay minerals form in neutral pH water that is ‘drinkable” and conducive to the formation of life.

“Curiosity discovered that the fine-grained sedimentary rocks preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy,” according to one of the science papers co-authored by Grotzinger.

“This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species.”

The rover has detected key elements required for life including carbon, hydrogen, oxygen, sulfur nitrogen and phosphorous.

The team is still looking for signatures of organic molecules.

Right now the researchers are driving Curiosity along a 6 mile path to the base of Mount Sharp -the primary mission destination – which they hope to reach sometime in Spring 2014.

But along the way they hope to stop at a spot where wind has eroded the sedimentary rocks just recently enough to expose an area that may still preserve evidence for organic molecules – since it hasn’t been bombarded by destructive cosmic radiation for billions of years.

Stay tuned here for Ken’s continuing Curiosity, Chang’e 3, LADEE, MAVEN and MOM news.

Ken Kremer

…………….

Learn more about Curiosity, Orion, MAVEN, MOM, Mars rovers, Chang’e 3, SpaceX, and more at Ken’s upcoming presentations

Dec 10: “Antares ISS Launch from Virginia, Mars and SpaceX Mission Update”, Amateur Astronomers Association of Princeton, Princeton University, Princeton, NJ, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Take a Virtual Spin Around Mars’ North Pole

An image from ESA's Mars Express taken in May of 2010 shows the north pole of Mars during the red planet's summer solstice. All the carbon dioxide ice has gone, leaving just a bright cap of water ice. Credit: ESA.

Get a satellite’s-eye view of the Martian north pole in this new animation from the Mars Express spacecraft, using data from the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument, MARSIS. This instrument allows for studying the surface heights, providing a 3-D view of the Mars’ north pole.

You can see the prominent gap in the ice cap, which is a 318 km-long, 2 km-deep chasm called Chasma Boreale.

In all, the ice cap has a diameter of about 1000 km and consists of many thin layers of ice mixed with dust that extend to a depth of around 2 km below the cap.

ESA says the layers result from variations in the orbit and rotation of Mars that affect the amount of sunlight received at the poles, and thus the amount of melting and deposition of materials over time. Meanwhile, strong prevailing winds are thought to be responsible for shaping the spiral troughs.

The MARSIS instrument works by sending low-frequency radio waves towards the surface of Mars, and they are reflected back to the spacecraft from the planet’s surface. The strength and timing of the radar echoes are a gauge of the depths of different types of interfaces, such as between rock, water or ice.

Video credit: ESA/ASI/NASA/JPL/La Sapienza University/INAF (A. Frigeri)