Black Holes Can Halt Star Formation in Massive Galaxies

This research published in Nature is the first direct confirmation that supermassive black holes are capable of shutting down galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at snails pace albeit with the odd exception. Take the formation of galaxies growing in the early universe. Their immense gravitational field would suck in dust and gas from the local vicinity creating vast collections of stars. In the very centre of these young galaxies, supermassive blackholes would reside turning the galaxy into powerful quasars. A recent survey by the James Webb Space Telescope (JWST) reveals that black holes can create a powerful solar wind that can remove gas from galaxies faster than they can form into stars, shutting off the creation of new stars.

Continue reading “Black Holes Can Halt Star Formation in Massive Galaxies”

Even Early Galaxies Grew Hand-in-Hand With Their Supermassive Black Holes

An artist’s impression of a quasar. Credit: NASA / ESA / J. Olmsted, STScI

Within almost every galaxy there is a supermassive black hole. This by itself implies some kind of formative connection between the two. We have also observed how gas and dust within a galaxy can drive the growth of galactic black holes, and how the dynamics of black holes can both drive star formation or hinder it depending on how active a black hole is. But one area where astronomers still have little information is how galaxies and their black holes interacted in the early Universe. Did black holes drive the formation of galaxies, or did early galaxies fuel the growth of black holes? A recent study suggests the two evolved hand in hand.

Continue reading “Even Early Galaxies Grew Hand-in-Hand With Their Supermassive Black Holes”

Sometimes Compact Galaxies Hide Their Black Holes

Illustration of an active quasar. What role does its dark matter halo play in activating the quasar? Credit: ESO/M. Kornmesser
Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

Quasars, short for quasi-stellar objects, are one of the most powerful and luminous classes of objects in our Universe. A subclass of active galactic nuclei (AGNs), quasars are extremely bright galactic cores that temporarily outshine all the stars in their disks. This is due to the supermassive black holes in the galactic cores that consume material from their accretion disks, a donut-shaped ring of gas and dust that orbit them. This matter is accelerated to close to the speed of light and slowly consumed, releasing energy across the entire electromagnetic spectrum.

Based on past observations, it is well known to astronomers that quasars are obscured by the accretion disk that surrounds them. As powerful radiation is released from the SMBH, it causes the dust and gas to glow brightly in visible light, X-rays, gamma-rays, and other wavelengths. However, according to a new study led by researchers from the Centre for Extragalactic Astronomy (CEA) at Durham University, quasars can also be obscured by the gas and dust of their entire host galaxies. Their findings could help astronomers better understand the link between SMBHs and galactic evolution.

Continue reading “Sometimes Compact Galaxies Hide Their Black Holes”

The Early Universe Should Be Awash in Active Galaxies, but JWST Isn't Finding Them

Artist view of an active black hole in the early universe. Credit: Boston University/Cosmovision

For decades the most distant objects we could see were quasars. We now know they are powerful active black holes. Active galactic nuclei so distant that they resemble star-like points of light. It tells us that supermassive black holes in the early Universe can be powerful monsters that drive the evolution of their galaxies. We had thought most early supermassive black holes went through such an active phase, but a new study suggests most supermassive black holes don’t.

Continue reading “The Early Universe Should Be Awash in Active Galaxies, but JWST Isn't Finding Them”

eROSITA Sees Changes in the Most Powerful Quasar

Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva
Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva

After almost seventy years of study, astronomers are still fascinated by active galactic nuclei (AGN), otherwise known as quasi-stellar objects (or “quasars.”) These are the result of supermassive black holes (SMBHs) at the center of massive galaxies, which cause gas and dust to fall in around them and form accretion disks. The material in these disks is accelerated to close to the speed of light, causing it to release tremendous amounts of radiation in the visible, radio, infrared, ultraviolet, gamma-ray, and X-ray wavelengths. In fact, quasars are so bright that they temporarily outshine every star in their host galaxy’s disk combined.

The brightest quasar observed to date, 100,000 billion times as luminous as our Sun, is known as SMSS J114447.77-430859.3 (J1144). This AGN is hosted by a galaxy located roughly 9.6 billion light years from Earth between the constellations Centaurus and Hydra. Using data from the eROSITA All Sky Survey and other space telescopes, an international team of astronomers conducted the first X-ray observations of J1144. This data allowed the team to investigate prevailing theories about AGNs that could provide new insight into the inner workings of quasars and how they affect their host galaxies.

Continue reading “eROSITA Sees Changes in the Most Powerful Quasar”

Advanced Life Should Have Already Peaked Billions of Years Ago

The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester

Did humanity miss the party? Are SETI, the Drake Equation, and the Fermi Paradox all just artifacts of our ignorance about Advanced Life in the Universe? And if we are wrong, how would we know?

A new study focusing on black holes and their powerful effect on star formation suggests that we, as advanced life, might be relics from a bygone age in the Universe.

Continue reading “Advanced Life Should Have Already Peaked Billions of Years Ago”

Dust is Hiding how Powerful Quasars Really are

An artist’s impression of what the dust around a quasar might look like from a light year away. Credit Peter Z. Harrington

In the 1970s, astronomers discovered that the persistent radio source at the center of our galaxy was a supermassive black hole (SMBH). Today, this gravitational behemoth is known as Sagittarius A* and has a mass roughly 4 million times that of the Sun. Since then, surveys have shown that SMBHs reside at the center of most massive galaxies and play a vital role in star formation and galactic evolution. In addition, the way these black holes consume gas and dust causes their respective galaxies to emit a tremendous amount of radiation from their Galactic Centers.

These are what astronomers refer to as Active Galactic Nuclei (AGN), or quasars, which can become so bright that they temporarily outshine all the stars in their disks. In fact, AGNs are the most powerful compact steady sources of energy in the Universe, which is why astronomers are always trying to get a closer look at them. For instance, a new study led by the University of California, Santa Cruz (UCSC) indicates that scientists have substantially underestimated the amount of energy emitted by AGN by not recognizing the extent to which their light is dimmed by dust.

Continue reading “Dust is Hiding how Powerful Quasars Really are”

Webb’s New Image Reveals a Galaxy Awash in Star Formation

This JWST image shows NGC 7469, a luminous, face-on spiral galaxy approximately 90 000 light-years in diameter that lies roughly 220 million light-years from Earth in the constellation Pegasus. Image Credit: ESA/Webb, NASA & CSA, L. Armus, A. S. Evans

When a spiral galaxy presents itself just right, observations reveal more detail. That’s the case with NGC 7469, a spiral galaxy about 220 million light-years away. It’s face-on towards us, and the James Webb Space Telescope captured its revealing scientific portrait.

Continue reading “Webb’s New Image Reveals a Galaxy Awash in Star Formation”

IceCube Senses Neutrinos Streaming From an Active Galaxy 47 Million Light-Years Away

This is a Hubble Space Telescope image of the Messier 77 spiral galaxy. Scientists working with the IceCube Neutrino Observatory detected neutrinos emanating from the galaxy's core. Image Credit: By NASA, ESA & A. van der Hoeven - http://www.spacetelescope.org/news/heic1305/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=25328266

Researchers using the IceCube Neutrino Observatory have detected neutrinos emanating from the energetic core of an active galaxy millions of light-years away. Neutrinos are difficult to detect, and finding them originating from the galaxy is a significant development. What does the discovery mean?

Continue reading “IceCube Senses Neutrinos Streaming From an Active Galaxy 47 Million Light-Years Away”

Webb Sees Organic Molecules in the Hearts of Galaxies, Surprisingly Close to Active Supermassive Black Holes

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

When the James Webb Space Telescope (JWST) launched, one of its jobs was studying galactic formation and evolution. When we look around the Universe, today’s galaxies take the shape of grand spirals like the Whirlpool galaxy and giant ellipticals like M60. But galaxies didn’t always look like this.

We don’t see these shapes when we look at the most distant and most ancient galaxies. Early galaxies are lumpy and misshapen and lack the structure of modern galaxies.

A new study based on JSWT observations looks at organic molecules near galactic centers. The researchers say observing these molecules can teach us a lot about galactic evolution.

Continue reading “Webb Sees Organic Molecules in the Hearts of Galaxies, Surprisingly Close to Active Supermassive Black Holes”