Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

This artist’s impression illustrates a binary pair of giant stars. Despite being born from the same molecular cloud, astronomers often detect differences in binary stars’ chemical compositions and planetary systems. Image Credit: NOIRLab/NSF/AURA/J. da Silva (Spaceengine)/M. Zamani

It stands to reason that stars formed from the same cloud of material will have the same metallicity. That fact underpins some avenues of astronomical research, like the search for the Sun’s siblings. But for some binary stars, it’s not always true. Their composition can be different despite forming from the same reservoir of material, and the difference extends to their planetary systems.

New research shows that the differences can be traced back to their earliest stages of formation.

Continue reading “Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.”

Earth Had a Magnetosphere 3.7 Billion Years Ago

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. The field can be thought of as a huge bubble -- called the magnetosphere --, protecting us from cosmic radiation and charged particles that bombard Earth in solar winds. Credit: ESA/ATG medialab
The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. The field can be thought of as a huge bubble -- called the magnetosphere -- protecting us from cosmic radiation and charged particles that bombard Earth in solar winds. Credit: ESA/ATG medialab

We go about our daily lives sheltered under an invisible magnetic field generated deep inside Earth. It forms the magnetosphere, a region dominated by the magnetic field. Without that planetary protection shield, we’d experience harmful cosmic radiation and charged particles from the Sun.

Continue reading “Earth Had a Magnetosphere 3.7 Billion Years Ago”

Astronomers Think They’ve Found Examples of the First Stars in the Universe

An artist's illustration of some of the Universe's first stars. Called Population 3 stars, they formed a few hundred million years after the Big Bang. Image Credit: By NASA/WMAP Science Team - https://www.nasa.gov/vision/universe/starsgalaxies/fuse_fossil_galaxies.html (image link), Public Domain, https://commons.wikimedia.org/w/index.php?curid=1582286

When the first stars in the Universe formed, the only material available was primordial hydrogen and helium from the Big Bang. Astronomers call these original stars Population Three stars, and they were extremely massive, luminous, and hot stars. They’re gone now, and in fact, their existence is hypothetical.

But if they did exist, they should’ve left their fingerprints on nearby gas, and astrophysicists are looking for it.

Continue reading “Astronomers Think They’ve Found Examples of the First Stars in the Universe”

First Light from Einstein Probe: A Supernova Remnant

Supernova remnant Puppis A

On 9 January 2024, the Einstein probe was launched, its mission to study the night sky in X-rays. The first image from the probe that explores the Universe in these energetic wavelengths has just been released. It shows Puppis A, the supernova remnant from a massive star that exploded 4,000 years ago. The image showed the expanding cloud of ejecta from the explosion but now, Einstein will continue to scan the skies for other X-ray events. 

Continue reading “First Light from Einstein Probe: A Supernova Remnant”

Galaxies Evolved Surprisingly Quickly in the Early Universe

Galactic Bar

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of shapes, typically; spiral, elliptical, barred-spiral and irregular. The barred-spiral galaxy has been known to be a feature of the modern universe but a study from astronomers using the Hubble Space Telescope has recently challenged that view. Following on observations using the James Webb Space Telescope has found the bar feature in some spiral galaxies as early as 11 billion years ago suggesting galaxies evolved faster in the early Universe than previously expected. 

Continue reading “Galaxies Evolved Surprisingly Quickly in the Early Universe”

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

These diagrams show a set of possible routes a spacecraft could take between different regions near to the Moon. Image via a new paper by Danny Owen and Nicola Baresi.

When a spacecraft arrives at its destination, it settles into an orbit for science operations. But after the primary mission is complete, there might be other interesting orbits where scientists would like to explore. Maneuvering to a different orbit requires fuel, limiting a spacecraft’s number of maneuvers.

Researchers have discovered that some orbital paths allow for no-fuel orbital changes. But the figuring out these paths also are computationally expensive. Knot theory has been shown to find these pathways more easily, allowing the most fuel-efficient routes to be plotted. This is similar to how our GPS mapping software plots the most efficient routes for us here on Earth.

Continue reading “How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel”

Another New Molecule Discovered Forming in Space

New research has revealed the presence of a previously unknown molecule in space called 2-methoxyethanol. Scientists found the large, 13-atom molecule in the star forming region NGC 63341. Image Credit: Fried et al. 2924.

The list of chemicals found in space is growing longer and longer. Astronomers have found amino acids and other building blocks of life on comets, asteroids, and even floating freely in space. Now, researchers have found another complex chemical to add to the list.

Continue reading “Another New Molecule Discovered Forming in Space”

JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

Astronomers used the JWST's interferometry mode to study the PDS 70 extrasolar system. Image Credit: Blakely et al. 2024.

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study a well-known extrasolar system called PDS 70. The goal? To test the interferometry mode and see how it performs when observing a complex target.

Continue reading “JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star”

A Cold Brown Dwarf is Belching Methane Into Space

This artist concept portrays the brown dwarf W1935. Credit: NASA, ESA, CSA, Leah Hustak (STScI)

Brown dwarfs span the line between planets and stars. By definition, a star must be massive enough for hydrogen fusion to occur within its core. This puts the minimum mass of a star around 80 Jupiters. Planets, even large gas giants like Jupiter, only produce heat through gravitational collapse or radioactive decay, which is true for worlds up to about 13 Jovian masses. Above that, deuterium can undergo fusion. Brown dwarfs lay between these two extremes. The smallest brown dwarfs resemble gas planets with surface temperatures similar to Jupiter. The largest brown dwarfs have surface temperatures around 3,000 K and look essentially like stars.

Continue reading “A Cold Brown Dwarf is Belching Methane Into Space”

Measuring Exoplanetary Magnetospheres with the Square Kilometer Array

Earth's magnetosphere

Life on Earth would not be possible without food, water, light, a breathable atmosphere and surprisingly, a magnetic field. Without it, Earth, and its inhabitants would be subjected to the harmful radiation from space making life here, impossible. If we find exoplanets with similar magnetospheres then those worlds may well be habitable. The Square Kilometer Array (SKA) which is still under construction should be able to detect such magnetospheres from radio emissions giving us real insight into our exoplanet cousins. 

Continue reading “Measuring Exoplanetary Magnetospheres with the Square Kilometer Array”