What’s the Most Earth-Like Planet In The Solar System?

by Fraser Cain on July 11, 2013


Life on Earth got you down? Thinking you’d like to pick up and move to another planet? I’ve got bad news for you. Without protection, there’s no place in the entire Solar System that wouldn’t kill you in few seconds.

You’re looking at scorching temperatures, poisonous atmospheres, crushing gravity, bone chilling cold, a complete lack of oxygen, killer radiation, and more.

The entire Solar System is hostile to life as we know it.

If we had to choose from a range of terrible options, what would be the most Earthlike place in the Solar System?

We would want a world that has a similar gravity, similar atmospheric pressure and composition, protection from radiation, and a comfortable temperature. Just like the Earth.

Let’s look at a few candidates:

Astrophoto: The Moon by Logan Mancuso

The Moon. Credit: Logan Mancuso

The Moon looks good. It’s close and… well, it’s close. It’s an airless world, so you’d need a spacesuit. Low gravity is bad news for your bones, which will lose mass and become brittle. Temperatures range from freezing cold to scorching hot, and there’s no atmosphere or significant magnetic field to protect you from the radiation of space.

While we’re suggesting moons, how about Titan, Saturn’s largest Moon?

It’s only 15% of Earth’s gravity, and the temperatures dip down to minus -179 degrees C; cold enough that it rains liquid methane. Even though the atmosphere is unbreathable, the good news is that the pressure is only a little higher than Earth’s. Which means you wouldn’t need a pressurized spacesuit, just a really, really warm coat.

Turning on the Tap - Commissioned artwork - Colonist tapping into a sub-surface aquifer (©Mars Foundation)

Turning on the Tap РCommissioned artwork РColonist tapping into a sub-surface aquifer (©Mars Foundation)

How about Mars, the target of so many colonization plans and sci fi adventures?

The gravity of Mars is only 38% the gravity of Earth; and we don’t know what effect a long stay in this gravity would have on the human body. The atmosphere is poisonous carbon dioxide, and the pressure is less than 1% of sea level on Earth. So, you’d better pack a spacesuit. The temperatures can rise as high as a comfortable 35 degrees C, but then plunge down to -143 degrees C at the poles. One big problem with Mars is a total lack of magnetosphere. Radiation from space would be a constant hazard for anyone on the surface of the planet.

Atmosphere of Venus. Credit: ESA

Atmosphere of Venus. Credit: ESA

Perhaps another planet? How about Venus?

On the surface, it’s right out of the running. The temperature is an oven-like 462 degrees C, with a surface pressure 92 times more than Earth. The atmosphere is almost entirely carbon dioxide, with clouds of sulphuric acid. On the plus side, it has gravity roughly similar to Earth, and a thick atmosphere that would protect you from radiation.

Unfortunately, you’d die faster on the surface of Venus than almost anywhere else in the Solar System.

But… there is a place on Venus that’s downright lovely.

Up in the clouds.

Cloud city of Bespin, from Stars Wars

Amazingly, if you rise up through the clouds of Venus to an altitude of 50-60 kilometers, the atmospheric pressure and temperature are the same as on Earth. The atmosphere would still be toxic carbon dioxide, but breathable air would be a “lifting gas” on Venus. You could float around the skies of Venus in a balloon made of breathable air. Stand out on the deck of your Venusian sky city in shorts and a T-shirt, soaking up the sunlight in regular Earth gravity.

Sounds idyllic, right?

So, opinions will vary. Some think Mars is the most Earthlike place in the Solar System, but in my opinion, the clouds of Venus are the place to go.

I’ll see you there.

Related Sources
Colonization of Venus
MarsOne Mission
Pros and Cons of Colonizing the Moon

About 

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay.

Comments on this entry are closed.

Previous post:

Next post: