Huge Asteroid Impact Crater Found Just Under the Ice in Greenland

The newly-discovered crater is 31 km. across, larger than Paris. Image: NASA's Goddard Space Flight Center.

An international team of scientists have discovered what lay hidden under Arctic ice for thousands or even hundreds of thousands of years. Using data primarily from NASA’s Operation IceBridge, they discovered one of the 25 largest impact craters anywhere on Earth. And its discovery may re-ignite an old climate debate.

Continue reading “Huge Asteroid Impact Crater Found Just Under the Ice in Greenland”

12,800 Years Ago, Earth Was Struck by a Disintegrating Comet, Setting Off Global Firestorms

According to modern theories of geological evolution, the last major ice age (known as the Pliocene-Quaternary glaciation) began about 2.58 million years ago during the late Pliocene Epoch. Since then, the world has experienced several glacial and interglacial periods, and has been in an inter-glacial period (where the ice sheets have been retreating) ever since the last glacial period ended about 10,000 years ago.

According to new research, this trend experienced a bit of a hiccup during the late Paleolithic era. It was at this time – roughly 12,800 years ago, according to a new study from the University of Kansas – that a comet struck our planet and triggered massive wildfires. This impact also triggered a short glacial period that temporarily reversed the previous period of warming, which had a drastic affect on wildlife and human development.

The study in question, “Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ~12,800 Years Ago”, was so large that it was divided into two parts. Part I. Ice Cores and Glaciers; and Part II. Lake, Marine, and Terrestrial Sediments, were both recently published by The Journal of Geography, part of the the University of Chicago Press’ series of scientific publications.

New research shows that some 12,800 years ago, an astonishing 10 percent of the Earth’s land surface, or about 10 million square kilometers, was consumed by fires. Credit: Pexels.com

For the sake of their study, the team combined data from ice core, forest, pollen and other geochemical and isotopic markers obtained from more than 170 different sites across the world. Based on this data, the team concluded that roughly 12,800 years ago, a global disaster was triggered when a stream of fragments from a comet measuring about 100 km (62 mi) in diameter exploded in Earth’s atmosphere and rained down on the surface.

As KU Emeritus Professor of Physics & Astronomy Adrian Melott explained in a KU press release:

“The hypothesis is that a large comet fragmented and the chunks impacted the Earth, causing this disaster. A number of different chemical signatures — carbon dioxide, nitrate, ammonia and others — all seem to indicate that an astonishing 10 percent of the Earth’s land surface, or about 10 million square kilometers, was consumed by fires.”

Ice ages are characterized by a drop in average global temperatures, resulting in the expansion of ice sheets globally. Credit: NASA

According to their research, these massive wildfires also caused a massive feedback in Earth’s climate. As fires rushed across much of the planet’s landscape, the smoke and dust clogged the sky and blocked out sunlight. This triggered rapid cooling in the atmosphere, causing plants to die, food sources to dwindle, and ocean levels to drop. Last, but not least, the ice sheets which had been previously retreating began to advance again.

This quasi-ice age, according to the study, lasted about another thousand years. When the climate began to warm again, life began to recover, but was faced with a number of drastic changes. For example, fewer large animals survived, which affected the hunter-gather culture of humans all across North America. This was reflected in the different types of spear points that have been dated to this period.

What’s more, pollen samples obtained from this period indicate that pine forests were likely burned off and were replaced by poplar forests, a species that colonizes cleared areas. The authors also suggest that this impact could have been responsible for the so-called Younger Dryas cool episode. This period occurred roughly 12,000 years ago, where gradual climatic warming was temporarily reversed.

Intrinsic to this period was an increase of biomass burning and the extinctions of larger species during the late Pleistocene period (ca. 2,588,000 to 11,700 years ago). These sudden changes are believed to be what led to severe shifts in human populations, causing a decline during the 1000-year cold period, and leading to the adoption of agriculture and animal husbandry once the climate began to warm again.

Pleistocene of Northern Spain showing woolly mammoth, cave lions eating a reindeer, tarpans, and woolly rhinoceros. Credit: Wikipedia Commons/Mauricio Antón

In short, this new theory could help explain a number of changes that made humanity what it is today. As Mellot indicated:

“Computations suggest that the impact would have depleted the ozone layer, causing increases in skin cancer and other negative health effects. The impact hypothesis is still a hypothesis, but this study provides a massive amount of evidence, which we argue can only be all explained by a major cosmic impact.”

These studies not only provide insight into the timeline of Earth’s geological evolution, they also sheds light on the history of the Solar System. According to this study, the remnants of the meteor which struck Earth still persist within our Solar System today. Last, but not least, the climate shifts that these impacts created had a profound effect on the evolution of life here on Earth.

Further Reading: Kansas University

Did A Comet Impact Push Humans Into Technological Overdrive?

About 14,500 years ago, Earth began transitioning from its cold, glacial self to a warmer interglacial state. However, partway through this period, temperatures suddenly returned to near-glacial conditions. This abrupt change (known as the Younger Dryas period) is believed by some to be the reason why hunter-gatherers started forming sedentary communities, farming, and laying the groundwork for civilization as we know it – aka. the Neolithic Revolution.

For over a decade, there have been scientists who have argued that this period was the result of a comet hitting Earth. Known as the Younger Dryas Impact Hypothesis (aka. the Clovis Comet Hypothesis), the theory is largely based on ice core samples from Greenland that show a sudden global temperature change. But according to a new study by a research team from the University of Edinburgh, archaeological evidence may also prove this hypothesis correct.

The Younger Dryas period takes its name from a species of flower known as Dryas octopetala. This plant is known to grow in cold conditions, and became common in Europe during the period. Because of the way it began abruptly – roughly 12,500 years ago – and then ended just as abruptly 1200 years later, many scientists are convinced it was caused by an external event.

Göbekli Tepe, structures A-D of the site, located in southern Turkey. Credit: Wikipedia Commons/Teomancimit

For the sake of their study – which was recently published in the journal Mediterranean Archaeology and Archaeometry under the title “Decoding Göbekli Tepe With Archaeoastronomy: What Does the Fox Say?“- the team found an astronomical link to the stone pillars at Göbekli Tepe. Located in southern Turkey, this archaeological find is the oldest known temple site in the world (dated to ca. 10,950 BCE).

This site, it should be noted, is contemporary with the Greenland ice core samples, which are dated to around 10,890 BCE. Of the sites many features, none are more famous than the many standing pillars that dot the excavated grounds. This is because of the extensive pictograms and animal reliefs that decorate these pillars, which include various representations of mammal and avian species- particularly vultures.

Pillar 43, which is also known as the “vulture stone”, was of particular interest to archeologists, as it is suspected that its representations (associated with death) could have been intended to commemorate a devastating event. The other images, they ventured, were meant to depict the constellations, and that their placement relative to each other accorded to the positions of the then-known asterisms in the night sky.

This theory was based on images they took of the site, which they then examined using the planetarium program stellarium 0.15. In the end, they found that the images bore a resemblance to constellations that would have been visible in 10,950 BCE. As such, they concluded that the temple site may have been an observatory, and that the images were a catalog of celestial events – which include the Taurid meteor stream.

Wall pillars with three animal symbols in series. Part a) is pillar 2 from Enclosure A, while part b) is pillar 38, Enclosure D. Credit: Travel The Unknown

As they state in their study:

“We begin by noting the carving of a scorpion on pillar 43, a well -known zodiacal symbol for Scorpius. Based on this observation, we investigate to what extent other symbols on pillar 43 can be interpreted as zodiacal symbols or other familiar astronomical symbols… We suggest the vulture/eagle on pillar 43 can be interpreted as the ‘teapot’ asterism of our present-day notion of Sagittarius; the angle between the eagle/vulture’s head and wings, in particular, agrees well with the ‘handle’,‘lid’ and ‘spout’ of the teapot asterism. We also suggest the ‘bent-bird’ with downward wriggling snake or fish can be interpreted as the ‘13th sign of the zodiac’, i.e. of our present-day notion of Ophiuchus. Although its relative position is not very accurate, we suggest the artist(s) of pillar 43 were constrained by the shape of the pillar. These symbols are a reasonably good match with their corresponding asterisms, and they all appear to be in approximately the correct relative locations.

Similarly, they suggest that a carved circle at the center of pillar 43 could be interpreted as the Sun. They call this image the “date stamp” because it can be seen as communicating a specific date by indicating which part of the zodiac the Sun was in at the time of carving. By comparing the age of the site (based on carbon dating) to the apparent position of the Sun, they found that it was consistent with the Summer solstice of 10,950 BCE.

Of course, the team fully acknowledges that an astronomical interpretation is by no means the only possibility. In addition to the possibility of them being mythological references, they could also be representations of hunting or migration patterns. It’s also entirely possible they were not meant to convey any specific meaning, and were merely a description of the local environment, which would have been rich in flora and fauna at the time.

Pillar 43, Enclosure D, also known as the Vulture Stone of Göbekli Tepe. Credit: Martin B. Sweatman and Dimitrios Tsikritsis

In addition, the way vultures are commonly featured could be an indication that the site was a burial ground. This is consistent with iconography found at the archaeological sites of Çatalhöyük (in central, southern Turkey) and Jericho (in the West Bank). During the time period in question, Neolithic peoples were known to conduct sky burials, where the bodies of the deceased were left out in the open for carrion birds to pick over.

In such practices, the head was sometimes removed from the deceased and kept (for the sake of ancestor worship). This is consistent with one of the characters on Pillar 43, which appears to be a headless human. However, as the team go on to explain, they are confident that the connection between the site’s images and the Taurid meteor stream is a plausible one.

“[O]ur basic statistical analysis indicates our astronomical interpretation is very likely to be correct,” they write. “We are therefore content to limit ourselves to this hypothesis, and logically we are not required to pursue others.” And of course, they acknowledge that further research will be necessary before any conclusions can be made.

Despite the availability of other (and perhaps more plausible) explanations, one has to admit that the astronomical theory is appealing. Civilization as we know it being a response to a meteor impact, and ancient people cataloging it in their stone carvings. It’s got a real Deep Impact meets 2001: A Space Odyssey feel to it!

Further Reading: MAA Journal

Mexican Lake Bears Witness To Ancient Impact

[/caption]

Exotic sediments found beneath the floor of Lake Cuitzeo in central Mexico support theories of a major cosmic impact event 12,900 years ago, report a 16-member international research team. The impact may have caused widespread environmental changes and contributed to the extinctions of many large animal species.

Images of single and twinned nanodiamonds show the atomic lattice framework of the nanodiamonds. Each dot represents a single atom. (Source: UCSB release.)

The team found a 13,000-year-old  layer of sediment that contains materials associated with impact events, such as soot, impact spherules and atomic-scale structures known as nanodiamonds. The nanodiamonds found at Lake Cuitzeo are of a variety known as lonsdaleite, even harder than “regular” diamond and only found naturally as the result of impact events.

The thin layer of sediment below Cuitzeo corresponds to layers of similar age found throughout North America, Greenland and Western Europe.

It’s thought that a large several-hundred-meter-wide asteroid or comet entered Earth’s atmosphere at a shallow angle 12,900 years ago, melting rocks, burning biomass and, in general, causing widespread chaos and destruction. This hypothesized event would have occurred just before a period of unusually cold climate known as the Younger Dryas.

The Younger Dryas has been associated with the extinction of large North American animals such as mammoths, saber-tooth cats and dire wolves.

“The timing of the impact event coincided with the most extraordinary biotic and environmental changes over Mexico and Central America during the last approximately 20,000 years, as recorded by others in several regional lake deposits,” said James Kennett, professor of earth science at UC Santa Barbara and member of the research team. “These changes were large, abrupt, and unprecedented, and had been recorded and identified by earlier investigators as a ‘time of crisis.’ ”

The exotic materials found in the sediment beneath Cuitzeo could not have been created by any volcanic, terrestrial or man-made process. “These materials form only through cosmic impact,” Kennett said.

The only other widespread sedimentary layer ever found to contain such an abundance of nanodiamonds and soot is found at the K-T boundary, 65 million years ago. This, of course, corresponds to the impact event that led to the extinction of the dinosaurs.

The researchers’ findings appeared March 5 in the Proceedings of the National Academy of Sciences. Read the news release from UC Santa Barbara here.