Unexpected Solar Flare is Also the Largest in Twelve Years

The past summer has been a pretty terrible time in terms of weather. In addition to raging fires in Canada’s western province of British Columbia, the south-eastern United States has been pounded by successive storms and hurricanes – i.e. Tropical Storm Emily and Hurricanes Franklin, Gert, Harvey and Irma. As if that wasn’t enough, solar activity has also been picking up lately, which could have a serious impact on space weather.

This past week, researchers from the University of Sheffield in the UK and Queen’s University Belfast detected the largest solar flare in 12 years. This massive burst of radiation took place on Wednesday, September 6th, and was one of three observed over a 48-hour period. While this latest solar flare is harmless to humans, it could pose a significant hazard to communications and GPS satellites.

The flare was also the eighth-largest detected since solar flare activity began to be monitored back in 1996. Like the two previous flares which took place during the same 48-hour period, this latest burst was an X-Class flare – the largest type of flare known to scientists. It occurred at 13:00 GMT (06:00 PDT; 09:00 EST) and was measured to have an energy level of X9.3.

Essentially, it erupted with the force of one billion thermonuclear bombs and drove plasma away from the surface at speeds of up to 2000 km/s (1243 mi/s). This phenomena, known as Coronal Mass Ejections (CMEs), are known to play havoc with electronics in Low Earth Orbit (LEO). And while Earth’s magnetosphere offers protection from these events, electronic systems on the planets surface are sometimes affected as well.

The event was witnessed by a team from a consortium of Universities, which included the University of Sheffield and Queen’s University Belfast. With the support of the Science and Technology Facilities Council, they conducted their observations using the Institute for Solar Physics‘ (ISP) 1-meter Swedish Solar Telescope, which is located at the Roque de los Muchachos Observatory – operated by the Instituto de Astrofisica de Canarias.

As Professor Mihalis Mathioudakis, who led the project at Queen’s University Belfast, indicated in a recent University of Sheffield press statement:

“Solar flares are the most energetic events in our solar system and can have a major impact on earth. The dedication and perseverance of our early career scientists who planned and executed these observations led to the capture of this unique event and have helped to advance our knowledge in this area.”

The team was able to capture the opening moments of a solar flare’s life. This was extremely fortunate, since one of the biggest challenges of observing solar flares from ground-based telescopes is the short time-scales over which they erupt and evolve. In the case of X-class flares, they are capable of forming and reaching peak intensity in just about five minutes.

A powerful X2-class flare from sunspot region 2297 glows fiery yellow in this photo taken by NASA’s Solar Dynamics Observatory on March 11, 2015. Credit: NASA

In other words, observers – who only see a small part of the sun at any one moment – must act very quickly to ensure they catch the crucial opening moments of a flare’s evolution. As Dr Chris Nelson, from the Solar Physics and Space Plasma Research Centre (SP2RC) – who was one of the observers at the telescope – explained:

“It’s very unusual to observe the opening minutes of a flare’s life. We can only observe about 1/250th of the solar surface at any one time using the Swedish Solar Telescope, so to be in the right place at the right time requires a lot of luck. To observe the rise phases of three X-classes over two days is just unheard of.”

Another interesting thing about this flare, and the two that preceded it, was the timing. At present, astronomers expected that we were in a period of diminished solar activity. But as Dr Aaron Reid, a research fellow at at Queen’s University Belfast’s Astrophysics Research Center and a co-author on the paper, explained:

“The Sun is currently in what we call solar minimum. The number of Active Regions, where flares occur, is low, so to have X-class flares so close together is very usual. These observations can tell us how and why these flares formed so we can better predict them in the future.”

Professor Robertus von Fáy-Siebenbürgen, who leads the SP2RC, was also very enthused about the research team’s accomplishment. “We at SP2RC are very proud to have such talented scientists who can make true discoveries,” he said. “These observations are very difficult and will require hard work to fully understand what exactly has happened on the Sun.”

Predicting when and how solar flares will occur will also aid in the development of early warning and preventative measures. The is part of growing industry that seeks to protect satellites and orbital missions from harmful electromagnetic disruption. And with humanity’s presence in LEO expended to grow considerably in the coming decades, this industry is expected to become worth several billion dollars.

Yes, with everything from small satellites, space planes, commercial habitats and more space stations being deployed to space, Low Earth Orbit is expected to get pretty crowded in the coming decades. The last thing we need is for vast swaths of this machinery or – heaven forbid! – crewed spacecraft, stations and habitats to become inoperative thanks to solar flare activity.

If human beings are to truly become a space-faring race, we need to know how to predict space weather the same we do the weather here on Earth. And just like the wind, the rain, and other meteorological phenomena, we need to know when to batten down the hatches and adjust the sails.

Further Reading: University of Sheffield

Aurora Watch! Two Solar Particle Blasts Could Start Smacking Into Earth Friday

Bim, bam, smash! The Sun hurled two clouds of particles in our general direction, putting space weather watchers on alert. There’s now a high chance of auroras on Sept. 12 (Friday), according to the National Oceanic and Atmospheric Administration, with more activity possible during the weekend.

The coronal mass ejections erupted Sept. 9 and Sept. 10 from sunspot AR2158. The Sept. 10 flare packed the strongest class punch the sun has, an X-flare, which briefly caused HF radio blackouts on Earth. We have some amateur shots of the sunspot and Sun below.

“Radio emissions from shock waves at the leading edge of the CME suggest that the cloud tore through the sun’s atmosphere at speeds as high as 3,750 km/s [2,330 miles per second],” wrote SpaceWeather.com. “That would make this a very fast moving storm, and likely to reach Earth before the weekend. Auroras are definitely in the offing.”

Photographer John Chumack captured the Sun and AR2158 in these pictures from Monday (Sept. 8). If you’ve got some great Sun shots to share, be sure to put it on our Universe Today Flickr group!

Sunspot AR2158 taken on Sept. 8, 2014. Credit:  John Chumack
Sunspot AR2158 taken on Sept. 8, 2014. Credit: John Chumack
The Sun on Sept. 8, 2014, including active sunspots. Credit:  John Chumack
The Sun on Sept. 8, 2014, including active sunspots. Credit: John Chumack

The Sun Fires Off a Third X-Class Flare

Remember yesterday when we mentioned two X-class flares erupting from the Sun within the space of about an hour? We probably should have waited a bit and gone for the trifecta: this morning the same active region flared yet again, making it three high-powered flares within a single 24-hour period.

(And to think this active region has only just come around the corner!)
On June 10, 2014, AR2087 announced its arrival around the southwestern limb of the Sun with an X2.2 flare at 11:41 UT (7:41 a.m. EDT). Then, just over an hour later, another eruption: an X1.5 flare at 12:55 UT. This got pretty much everyone’s attention… here comes 2087!

Perhaps figuring third time’s a charm, the active region blazed with a third flare this morning at 9:05 UT (5:05 a.m. EDT). “Only” an X1-class, it was the weakest of the three but AR2087 still has plenty of time for more as it makes its way around the Sun’s face — all the while aiming more and more our way, too.

Here’s a video of SDO observations showing the two June 10 flares:

X-class flares are the strongest in the letter-classification of solar flares, which send blasts of electromagnetic energy out into the Solar System. While these most recent three are low on the X-scale, they may result in increased auroral activity — especially since it appears that the first two were followed by a pair of CMEs that “cannibalized” each other on their way out. The resulting merged cloud of charged particles is expected to nick Earth’s magnetic field on Friday, June 13. (Source: Spaceweather.com)

No CME has been observed from the June 11 flare, but again: AR2087 hasn’t left the stage yet. Stay tuned!

Source: NASA. Learn more about how solar flares impact us on Earth here.

This Was the Best Watched Solar Flare Ever

Are giant dragons flying out of the Sun? No, this is much more awesome than that: it’s an image of an X-class flare that erupted from active region 2017 on March 29, as seen by NASA’s Interface Region Imaging Spectrograph (IRIS) spacecraft. It was not only IRIS’s first view of such a powerful flare, but with four other solar observatories in space and on the ground watching at the same time it was the best-observed solar flare ever.

(But it does kind of look like a dragon. Or maybe a phoenix. Ah, pareidolia!)

Check out a video from NASA’s Goddard Space Flight Center below:

In addition to IRIS, the March 29 flare was observed by NASA’s Solar Dynamics Observatory (SDO), NASA’s Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), JAXA and NASA’s Hinode spacecraft, and the National Solar Observatory’s Dunn Solar Telescope in New Mexico.

With each telescope equipped with instruments specially designed to observe the Sun in specific wavelengths almost no detail of this particular flare went unnoticed, giving scientists comprehensive data on the complex behavior of a single solar eruption.

Also, for another look at this flare from SDO and a coronal dimming event apparently associated with it, check out Dean Pesnell’s entry on the SDO is GO! blog here.

Source: NASA/GSFC

Yet Another X-Class Flare From AR 1748

Last night, as Commander Hadfield and the Expedition 35 crew were returning to Earth in their Soyuz spacecraft, the Sun unleashed yet another X-class flare from active region 1748, the third and most powerful eruption yet from the sunspot region in the past 24 hours — in fact, at a level of X3.2, it was the most intense flare observed all year.

And with this dynamic sunspot region just now coming around the Sun’s limb and into view, we can likely expect much more of this sort of activity… along with a steadily increasing chance of an Earth-directed CME.

According to SpaceWeather.com AR1748 has produced “the strongest flares of the year so far, and they signal a significant increase in solar activity. NOAA forecasters estimate a 40% chance of more X-flares during the next 24 hours.”

(Find out more about the classification of solar flares here.)

The sunspot region just became fully visible to Earth during the early hours of May 13 (UT).

Most recent SDO image of AR1748 (NASA/SDO/AIA)
Most recent SDO image of AR1748 (NASA/SDO/AIA)

Sunspots are regions where the Sun’s internal magnetic fields rise up through its surface layers, preventing convection from taking place and creating cooler, optically darker areas. They often occur in pairs or clusters, with individual spots corresponding to the opposite polar ends of magnetic lines.

Sunspots may appear dark because they are relatively cooler than the surrounding area on the Sun’s photosphere, but in ultraviolet and x-ray wavelengths they are brilliantly white-hot. And although sunspots look small compared to the Sun, they are often many times larger than Earth.

Read more: How Big Are Sunspots?

According to SDO project scientists Dean Pesnell on the SDO is Go! blog, AR1748 is not only rapidly unleashing flares but also changing shape.

“The movies show that the sunspot is changing, the two small groups on the right merging and the elongated spot on the lower left expanding out to join them,” Pesnell wrote earlier today.

Of course, as a solar scientist Pesnell is likely much more excited about the chance to observe further high-intensity activity than he is concerned about any dramatically negative impacts of a solar storm here on Earth, which, although possible, are still statistically unlikely.

“Great times ahead for this active region!” he added enthusiastically.

For updated information on AR1748’s activity visit SpaceWeather.com and NASA’s SDO site, and also check out TheSunToday.org run by solar physicist C. Alex Young, Ph.D.

Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.

 

Sunspot 1520 Fires a Flare

Remember that cool animation I posted earlier of AR1520 and how I said there’s no guarantee it wouldn’t unleash an X-class flare? Well at 16:48 UT today, it did. Just goes to show there’s no guarantees in space!

The X1.4-class flare will most likely affect Earth’s magnetic field as 1520 is directly facing us. Stay tuned for more!

Video & image: NASA/SDO and the AIA science team.

UPDATE: The CME associated with this flare is expected to impact Earth’s magnetosphere on Saturday between 3 and 5 p.m. EDT with “moderate to severe” activity possible. See an animated tracker here. (H/T to Francis Reddy at GSFC.) Also in the lineup for impact are MESSENGER and MSL.

Sun Releases a Powerful X5 Flare

[/caption]

Active Region 1429 unleashed an X5.4-class solar flare early this morning at 00:28 UT, as seen in this image by NASA’s Solar Dynamics Observatory (AIA 304). The eruption belched out a large coronal mass ejection (CME) into space but it’s not yet known exactly how it will impact Earth — it may just be a glancing blow.

Solar flares are categorized by a scale according to their x-ray brightness. X is the strongest class, followed by M and then C-class. Within each class the numbers 1 through 9 subdivide the flares’ intensity.

A run-in with an X5-class flare is a major geomagnetic event that can cause radio blackouts on Earth and disrupt satellite operations, as well as intensify auroral activity.

The GOES satellite data for the March 7 flare is below:

The CME is expected to impact Earth sometime on the 8th or 9th. Check back here or at Spaceweather.com for updates on the storm (and any subsequent aurora photos!)

Also, check out the video below, assembled by the SDO team. Just after the X5.4-class flare another smaller X1-class flare occurred, sending a visible wave cross the Sun.


Image courtesy NASA, SDO and the AIA science team. And thanks to Camilla Corona SDO for all the updates!