Hunting LightSail in Orbit

The hunt is on in the satellite tracking community, as the U.S. Air Force’s super-secret X-37B space plane rocketed into orbit today atop an Atlas V rocket out of Cape Canaveral.  This marks the start of OTV-4, the X-37B’s fourth trip into low Earth orbit. And though NORAD won’t be publishing the orbital elements for the mission, it is sure to provide an interesting hunt for backyard satellite sleuths on the ground.

Previous OTV missions were placed in a 40 to 43.5 degree inclination orbit, and the current NOTAMs cite a 61 degree azimuth angle for today’s launch out of the Cape which suggests a slightly shallower 39 degree orbit. Such variability speaks to the versatile nature of the second stage Centaur motor.

Image credit:
A capture of the X-37B in orbit. Image credit and copyright: Luke (Catching up)

There’s also been word afoot that future X-37B missions may return to Earth at the Kennedy Space Center, just like the Space Shuttle. To date, the X-37B has only landed at Vandenberg Air Force Base in California.

But there’s also another high interest payload being released along with a flock of CubeSats aboard AFPSC-5: The Planetary Society’s Lightsail-1.

Image credit:
The UltraSat P-POD CubeSat dispenser. Image credit: United Launch Alliance

About the size of a loaf of bread and the result of a successful Kickstarter campaign, LightSail is set to demonstrate key technologies in low Earth orbit before the Planetary Society’s main solar sail demonstrator takes to space in 2016.

The idea of using solar wind pressure for space travel is an enticing one. A big plus is the fact that unlike chemical propulsion, a solar sail does not need to contend with hauling the mass of its own fuel. The idea of using a solar sail plus a focused laser to propel an interstellar spacecraft has long been a staple of science fiction. But light-sailing technology has had a troubled history—the Planetary Society lost its Cosmos-1 mission launched from a Russian submarine in 2001. JAXA has fared better with its Venus-bound IKAROS, also equipped with a solar sail. To date, the IKAROS solar sail is the largest that has been deployed, at 20-metres on the diagonal.

Another use for space sail technology is the commanded reentry of spacecraft at the end of their mission life, as demonstrated by NanoSail-D2 in 2011.

Prospects of seeing LightSail may well be similar to what we had hunting for NanoSail-D2. Unfolded, LightSail will be 32 square meters in size, or about 5.6 meters on a side. NanoSail-D2 measured 3.1 meters on a side, and the reflective panels on the Iridium satellites which produce brilliant Iridium flares exceeding Venus in brightness measure about the size of a large rectangular door at 1 x 3 meters. Even the Hubble Space Telescope can flare on occasion as seen from the ground if one of its massive solar arrays catches the Sun just right.

Image credit:
Hubble can flare too! Image credit: David Dickinson

The 39 degree orbital inclination angle will also limit visible passes to from about 45 degrees north to 45 degrees south latitude.

Hunting down X-37B and LightSail will push ground observing skills to the max. Like NanoSail-D2, LightSail probably won’t be visible to the naked eye until it flares. What we like to do is note when a faint satellite is set to pass by a bright star, then sit back with our trusty 15x 45 image-stabilized binoculars and watch. We caught sight of the ‘tool bag’ lost during an ISS EVA in 2009 in this fashion. There it was, drifting past Spica as a +7th magnitude ‘star’. The key to this method is an accurate prediction—Heavens-Above now overlays orbital satellite passes on all-sky charts—and an accurate time source. We prefer to have WWV radio running in the background, as it’ll call out the time signal so we don’t have to take our eyes off the sky.

Image credit:
The orbital trace of OTV-3. Image credit: Orbitron

Veteran satellite watcher Ted Molczan recently discussed the prospects for spotting LightSail once it’s deployed.  “By then, the orbit will be visible from the northern hemisphere during the middle of the night. The southern hemisphere may have marginal evening passes. Note that the high area to mass ratio with the sail deployed, combined with the low perigee height, is expected to result in decay as soon as a couple days after deployment.”

Read a further discussion concerning OTV-4 and associated payloads by Mr. Molczan on the See-Sat message board here.

The Planetary Society’s Jason Davis confirmed for Universe Today that LightSail will deploy 28 days after launch. But we may only have a slim two day observation window for LightSail between deployment and reentry.

A deployment of LightSail 28 days after launch would put it in the June 16th timeframe.

“That’s the nominal mission time, yes,” Davis told Universe Today. “Our orbital models predict 2-10 days. For our 2016 flight, the mission will last at least four months.”

The Planetary Society plans to have a live ‘mission control center’ to track LightSail after P-POD deployment, complete with a Google Map showing pass predictions.

Satellite spotting can be a fun and addictive pastime, where part of the fun is sleuthing out what you’re seeing. Hey, some relics of space history such as the early Vanguards, Telstars, and Canada’s first satellite Alouette-1 are still up there! Nabbing these photographically are as simple as plopping your DSLR on a tripod, setting the focus and doing a time exposure as the satellite passes by.

Image credit:
The X-37B undergoing encapsulation in preparation for launch. Image credit: USAF

Here’s to smooth solar sailing and clear skies as we embark on our quest to track down the X-37B and LightSail-1 in orbit.

-Follow us as @Astroguyz on Twitter, as we’ll be providing further info on orbits and visibility passes as they are made public.

Air Force X-37B Spaceplane Launches on May 20 with Military, NASA and LightSail Payloads: Watch Live

Fourth flight of the secretive U.S. Air Force X-37B Orbital Test Vehicle is set for blastoff on May 20, 2015 from Cape Canaveral, Florida. Photo: Boeing
Story updated with further details and photos[/caption]

All systems are currently “GO” for the fourth launch of the US Air Force’s secretive unmanned, X-37B military space plane this Wednesday, May 20, on a flight combining both US national security experimental payloads as well as civilian science experiments sponsored by NASA, US Universities, commercial companies, and the solar sailing LightSail test from the Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. It will launch as a separate cubesat experiment. NASA also has an advanced materials science experiment flying aboard the robotically controlled X-37B.

The X-37B is set for blastoff atop a two stage United Launch Alliance (ULA) Atlas V 501 rocket on the AFSPC-5 mission under contract for the U.S. Air Force Rapid Capabilities Office.

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane.

Although virtually all the goals of the X-37B program are shrouded in secrecy, some details on the national security objectives have emerged and there are several unclassified experiments flying along as secondary objectives on the rocket and space plane, among them are experiments for NASA and the Planetary Society.

LightSail launches aboard the X-37B on May 20, 2015.  Credit: The Planetary Society
LightSail launches aboard the X-37B on May 20, 2015. Credit: The Planetary Society

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

Liftoff will take place from Space Launch Complex (SLC)-41 at Cape Canaveral Air Force Station, Florida, at some point during a four hour launch period that opens at 10:45 a.m. EDT and extends until 2:45 p.m. EDT on May 20.

ULA announced that the Launch Readiness Review was completed on Monday and everything is progressing normally toward the AFSPC-5 launch. The rocket is fully assembled and the space plane is encapsulated inside the 5 meter diameter payload fairing. It rolled out to the pad today, Tuesday, May 19.

You can watch the Atlas launch live via a ULA webcast here: http://www.ulalaunch.com

The ULA webcast begins at 10:45 a.m. EDT on May 20. The precise launch time is classified and won’t be announced until Wednesday morning.

The weather prognosis has improved markedly to a 60 percent chance of favorable weather conditions, up from only a 40 percent chance this past weekend.

The primary weather concerns are for violations of the launch weather rules related to cumulus clouds, surface electric fields, anvil clouds and lightning.

Launch officials are hopeful that acceptable launch conditions will occur sometime during the lengthy four hour launch window.

In the event of a 24 hour delay due to weather or technical issues, the outlook drops to only a 30% chance of favorable weather conditions during the launch window.

The OTV is somewhat like a miniature version of NASA’s space shuttles. Boeing has built two OTV vehicles.

2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandenberg AFB, Calif., on June 16, 2012.  The record setting mission lasted 469 days in earth orbit.  Designed to be launched like a satellite and land like an airplane, the second X-37B Orbital Test Vehicle, built by Boeing for the United States Air Force’s Rapid Capabilities Office, is an affordable, reusable space vehicle. Credit: Boeing. See landing video below
2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandernberg AFB, Calif., on June 16, 2012. It is designed to be launched like a satellite and land like an airplane. Credit: Boeing.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The reusable space plane is designed to be launched like a satellite and land on a runway like an airplane and a NASA space shuttle. The X-37B is one of the newest and most advanced reentry spacecraft.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

The OTV-4 mission will shift its focus at least somewhat from tests of the vehicles performance to more on science experiments both with extra capacity available on the Atlas V rocket and payload space aboard the X-37B itself.

“We’re very pleased with the experiments lined-up for our fourth OTV Mission OTV-4,” Walden noted.

“We’ll continue to evaluate improvements to the space vehicle’s performance, but we’re honored to host these collaborative experiments that will help advance the state-of-the-art for space technology

Among the experiments for the flight are 10 CubeSats. They will launch in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage that contains eight P-Pods to release the CubeSats.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft, ULA said in a statement.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and Planetary Society.

NASA is also flying an advanced materials science payload on the X-37B called the Materials Exposure and Technology Innovation in Space (METIS) investigation that will build on more than a decades worth of materials science research on the International Space Station (ISS) research.

“By flying the Materials Exposure and Technology Innovation in Space (METIS) investigation on the X-37B, materials scientists have the opportunity to expose almost 100 different materials samples to the space environment for more than 200 days. METIS is building on data acquired during the Materials on International Space Station Experiment (MISSE), which flew more than 4,000 samples in space from 2001 to 2013, NASA said in a statement.

“By exposing materials to space and returning the samples to Earth, we gain valuable data about how the materials hold up in the environment in which they will have to operate,” said Miria Finckenor, the co-investigator on the MISSE experiment and principal investigator for METIS at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

“Spacecraft designers can use this information to choose the best material for specific applications, such as thermal protection or antennas or any other space hardware.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance to launch USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance to launch USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. This up close view of the nose cone holding the secretive  X-37B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com
The X-37B is similar in many ways to NASA's space shuttle - but it is far smaller and unmanned. Photo Credit: Air Force
The X-37B is similar in many ways to NASA’s space shuttle – but it is far smaller and unmanned. Photo Credit: Air Force
US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive  X 37-B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive X 37-B shows the umbilical line attachments. Credit: Ken Kremer/kenkremer.com

Weekly Space Hangout – May 1, 2015: Prof. Coel Hellier, WASP & SuperWASP

Host: Fraser Cain (@fcain)
Special Guest: Prof. Coel Hellier, Professor of Astrophysics at Keele University, UK, to talk about WASP & SuperWASP.

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – May 1, 2015: Prof. Coel Hellier, WASP & SuperWASP”

Mysterious Military X-37B Space plane Lands after Nearly Two Years in Orbit – Video

Recovery crew members process the X-37B Orbital Test Vehicle at Vandenberg Air Force Base after completing 674 days in space. A total of three X-37B missions have been completed, totaling 1,367 days on orbit. Photo: Boeing
Watch cool landing video below[/caption]

The US Air Force’s unmanned, X-37B military space plane made an autonomous runway landing on Friday, Oct. 17, at Vandenberg Air Force Base, Calif., concluding an orbital test flight nearly two years in duration on a record breaking mission whose goals are shrouded in secrecy.

The Boeing-built X-37B, also known as the Orbital Test Vehicle (OTV), successfully fired its baking thrusters, plunged through the atmosphere, endured scorching re-entry heating and safely rolled to touch down on Vandenberg Air Force Base at 9:24 a.m. PDT Friday, concluding a clandestine 674-day experimental test mission for the U.S. Air Force Rapid Capabilities Office.

This was the third flight of an X-37B OTV vehicle on a mission known as OTV-3.

“I’m extremely proud of our team for coming together to execute this third safe and successful landing,” said Col Keith Balts, 30th Space Wing commander, in a statement.

“Everyone from our on console space operators to our airfield managers and civil engineers take pride in this unique mission and exemplify excellence during its execution.”

Nothing is known about the flights objectives or accomplishments beyond testing the vehicle itself.

The OTV is somewhat like a miniature version of NASA’s space shuttles. Boeing has built two OTV vehicles.

The reusable space plane is designed to be launched like a satellite and land on a runway like an airplane and a NASA space shuttle. The X-37B is one of the newest and most advanced reentry spacecraft.

A third mission of the Boeing-built X-37B Orbital Test Vehicle was completed on Oct. 17, 2014, when it landed and was recovered at Vandenberg Air Force Base, Calif, following a successful 674-day space mission.  Photo: Boeing
A third mission of the Boeing-built X-37B Orbital Test Vehicle was completed on Oct. 17, 2014, when it landed and was recovered at Vandenberg Air Force Base, Calif, following a successful 674-day space mission. Photo: Boeing

OTV-3 also marked the first reflight of an OTV vehicle, to test its re-usability.

The OTV-3 mission was launched from Cape Canaveral Air Force Station, Fla., on Dec. 11, 2012, encapsulated inside the payload fairing atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41.

Among the primary mission goals of the first two flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely.

It is not known if the X-37B conducted reconnaissance activities during the test flights. It does have the capability to deploy satellites in space.

All three OTV missions have launched from Cape Canaveral and landed at Vandenberg.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit.

Here’s a video of the OTV-3 landing:

Video Caption: The X-37B Orbital Test Vehicle mission 3 (OTV-3), the Air Force’s unmanned, reusable space plane, landed at Vandenberg Air Force Base at 9:24 a.m. Oct. 17. Credit: USAF

“The 30th Space Wing and our mission partners, Air Force Rapid Capabilities Office, Boeing, and our base support contractors, have put countless hours of hard work into preparing for this landing and today we were able to see the culmination of that dedication,” said Balts.

The 11,000 pound state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Altogether, the OTV vehicles have spent 1,334 days in Earth orbit.

The OTV’s can stay on orbit far longer than NASA’s shuttles since their power is supplemented by solar panels deployed from the vehicles open cargo bay.

“The landing of OTV-3 marks a hallmark event for the program” said the X-37B program manager. “The mission is our longest to date and we’re pleased with the incremental progress we’ve seen in our testing of the reusable space plane. The dedication and hard work by the entire team has made us extremely proud.”

“With a program total of 1,367 days on orbit over three missions, these agile and powerful small space vehicles have completed more days on orbit than all 135 Space Shuttle missions combined, which total 1,334 days,” said Ken Torok, Boeing director of Experimental Systems, in a statement.

Recovery crew members process the X-37B Orbital Test Vehicle at Vandenberg Air Force Base after completing 674 days in space. A total of three X-37B missions have been completed, totaling 1,367 days on orbit.   Photo: Boeing
Recovery crew members process the X-37B Orbital Test Vehicle at Vandenberg Air Force Base after completing 674 days in space. A total of three X-37B missions have been completed, totaling 1,367 days on orbit. Photo: Boeing

“The X-37B is the newest and most advanced re-entry spacecraft. Managed by the Air Force Rapid Capabilities Office, the X-37B program performs risk reduction, experimentation and concept of operations development for reusable space vehicle technologies,” according to an Air Force statement.

The Air Force says that the next X-37B launch on the OTV-4 mission is due to liftoff from Cape Canaveral sometime in 2015.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive  X 37-B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive X-37B shows the umbilical line attachments. Credit: Ken Kremer

Air Force’s Secret X-37B Space Plane Launches on Third Mission

Rising slowly on over 800,000 lbs of thrust, the Atlas V-OTV 3 mission begins. Credit: John O’Connor/nasatech

An Atlas V rocket launched from Cape Canaveral Air Force Station today, carrying the Air Force’s X-37B space plane into orbit on its third classified mission. Launch took place at 1:03 EST (18:03 UTC) for the unmanned Orbital Test Vehicle (OTV), which looks like a mini space shuttle.

The U.S. Air Force has not released any details of what may be on board the vehicle or what its mission may be. United Launch Alliance provided a webcast of the launch, but the broadcast was ended “at the request of our customer (the Air Force),” when the space plane successfully reached orbit.

See a video of the launch, below.

The X-37B is launched like a satellite and rides inside the fairing of the Atlas rocket. The X-37B can operate at in low Earth orbit for extended periods of time – the previous mission stayed in orbit for 469 days – and can re-enter Earth’s atmosphere and land on autopilot, landing just like a plane on a runway at Vandenberg Air Force Base in California.

Well into its roll program, the Atlas V-501 gracefully arcs across the blue skies. Credit: John O’Connor/nasatech

While looking much like the space shuttle, the X-37B is about 1/4 the size of NASA’s space shuttle’s and is built using composites lighter than aluminum, and it uses a new type of leading wing tiles, called Tough Rock, instead of the shuttle’s carbon-carbon tiles. It runs on solar power allowing for longer missions.

The plane itself is not so secretive – the Air Force has released images of it while it is on the ground – but its mission and payload are what are kept confidential. The mission could be Earth observation, surveillance or spying, or perhaps deploying a satellite.

A United Launch Alliance Atlas V is rolled to the pad at Space Launch Complex-41 in preparation for launch of the Air Force?s third Orbital Test Vehicle (OTV-3) mission. Credit: ULA

The launch was delayed several times so that ULA could investigate a glitch during a launch back in October.

“We had a little bit of concern with our upper stage engine, so we wanted to do some investigation and look into what was going on with that engine prior to (launch of the Orbital Test Vehicle),” said Jessica Rye, a ULA spokesperson.

In past missions, satellite watchers and amateur astronomers have kept tabs on the X-37B’s orbital whereabouts, and thanks to them, we expect to be able to provide small details about the space plane’s mission in the coming months.

More information: ULA

Top Secret Air Force Mini Shuttle lands after Record-Setting Stay in Space

Image Caption: 2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandernberg AFB, Calif., on June 16, 2012. The record setting mission lasted 469 days in earth orbit. Designed to be launched like a satellite and land like an airplane, the second X-37B Orbital Test Vehicle, built by Boeing for the United States Air Force’s Rapid Capabilities Office, is an affordable, reusable space vehicle. Credit: Boeing.
See landing video below

The 2nd of the US Air Force’s top secret X-37B unmanned, reusable mini shuttles safely landed on Saturday, June 16, at 5:48 a.m. Pacific local time at Vandenberg Air Force Base, California to conclude a record setting classified 469 day experimental test flight in Earth orbit.

This was the first flight of OTV-2 and the second flight of the military’s classified X-37B Orbital Test Vehicle (OTV) test program for the U.S. Air Force Rapid Capabilities Office.

The reusable space plane is designed to be launched like a satellite and land on a runway like an airplane and NASA space shuttle. The X-37B is one of the newest and most advanced reentry spacecraft.

Here is the YouTube landing video released by the US Air Force:

OTV-2 was launched atop a United Launch Alliance Atlas V booster from Cape Canaveral Air Force Station, Fla., on March 5, 2011.

About 18 minutes after launch, the Air Force imposed a news blackout on the classified mission. Details about the cargo and experiments loaded aboard the Air Force orbital space plane are shrouded behind a veil of military security.

It is not known if the X-37B conducted reconnaissance activities during the test flight. It does have the capability to deploy satellites in space

The Air Force says the primary mission goal was to check out the vehicles capabilities and testing the ability to send experiments to space and return them safely.


Image caption: Top secret Air Force X-37B OTV mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the classified X 37-B shows the umbilical line attachments. Credit: Ken Kremer

The mission duration of well over one year far exceeded the 220-day mission duration of the first OTV craft and tested additional capabilities. Two OTV vehicles have been built by Boeing. The first craft, known as OTV-1, was the United States’ first unmanned vehicle to return from space and land on its own.

Previously, NASA space shuttles piloted by astronauts were the only space vehicles that had demonstrated the capability of returning to Earth and being reused.

“The vehicle was designed for a mission duration of about 270 days,” said Lt. Col. Tom McIntyre, the X-37B program manager in an Air Force statement. “We knew from post-flight assessments from the first mission that OTV-1 could have stayed in orbit longer. So one of the goals of this mission was to see how much farther we could push the on-orbit duration.”

The 11,000 pound state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

“With the retirement of the space shuttle fleet, the X-37B OTV program brings a singular capability to space technology development,” McIntyre said. “The return capability allows the Air Force to test new technologies without the same risk commitment faced by other programs”

Among the cutting-edge technologies tested were the auto de-orbit capability, thermal protection tiles, and high-temperature components and seals.

“The X-37B’s advanced thermal protection and solar power systems, and environmental modeling and range safety technologies are just some of the technologies being tested,” said McIntyre. “Each mission helps us continue to advance the state-of-the-art in these areas.”


Image caption: Blastoff of the X-37B Orbital Test Vehicle (OTV) atop an Atlas V rocket on March 5, 2011 from Space Launch Complex-41 (SLC-41) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

OTV-1 may lift off as early as October 2012 from Cape Canaveral.

“We look forward to the second launch of OTV-1 later this year and the opportunity to demonstrate that the X-37B is an affordable space vehicle that can be repeatedly reused,” said Paul Rusnock, Boeing vice president of Government Space Systems.

Read my X-37B OTV-2 pre-launch report and see my up-close photo album of the Atlas launch pad – here

Ken Kremer

Secret X-37B Mini Space Shuttle Could Land Today

[/caption]

After more than a year in orbit, the US Air Force’s clandestine mini-space shuttle will likely land at Vandenberg Air Force Base in California sometime this week, with some reports saying it could land as early as today, Wednesday, June 13, 2012. It has been in orbit since March 5, 2011, but like the first X-37B mission that flew in 2010 and spent 224 days in space, the Air Force has not issued any information of what the craft is doing or where it is orbiting. However, amateur skywatchers and amateur satellite trackers have been keeping an eye on where the OTV-2 has been.

After launch it had a 331 km (206-mile)orbit inclined 42.8 degrees to the equator, but in the summer of 2011 the orbit was raised slightly to 337 km (209 miles).
The craft looks like a miniature space shuttle, and is 8.8 meters (29 feet) long with a wing span of 4.2 meters (14 feet). It can weigh up to about 5,000 kg (11,000 pounds) fueled for launch. The reported in-space design life is 270 days, but sources say that good performance on this mission enabled ground controllers to keep it aloft significantly longer.

Jeremy Eggers, a spokesman for the 30th Space Wing at Vandenberg was quoted by ABC News that the spacecraft’s first available landing opportunity will be Wednesday, depending on weather and technical conditions. The landing window extends through June 18, but Eggers says any landing is a “day-by-day situation based on the conditions.”

Secretive X-37B Space Plane Will be Landing Soon

[/caption]

After nearly 15 months on a secret mission, the Air Force’s X-37B, an unmanned, reusable space plane, will soon be coming back home. A news release from the Vandenberg Air Force Base says the landing is expected to occur during the early- to mid-June timeframe, although the exact landing date and time will depend on technical and weather considerations. The mini space plane has been in orbit since March 5, 2011.

This is the second mission of the Orbital Test Vehicles to fly in the X-37B program with the second space plane, OTV-2. The first X-37B mission flew in 2010, spending 224 days in space. This original vehicle has been refurbished and is scheduled to go back into space for another mission sometime in October of this year.

As for the second space plane, its long mission has been termed a success, although no mission specifics have been released. It launched on March 5, 2011 from Cape Canaveral Air Force Station in Florida. Since then, the press release said, Vandenberg crews have conducted extensive, periodic training in preparation for landing.

“The men and women of Team Vandenberg are ready to execute safe landing operations anytime and at a moment’s notice,” said Col. Nina Armagno, 30th Space Wing commander. The space professionals from the 30th Space Wing will monitor the de-orbit and landing of the vehicle.

Seen here is the X-37B Orbital Test Vehicle, compared with proposed X-37C crewed vehicle, the space shuttle and the Atlas V booster that is currently used to launch the OTV. Image Credit: AIAA/Grantz/Boeing

The mini spaceplane is 8.8 meters (29 feet) long with a wing span of 4.2 meters (14 feet). It can weigh up to about 5,000 kg (11,000 pounds) fueled for launch. The reported in-space design life is 270 days, but sources say that good performance on this mission enabled ground controllers to keep it aloft significantly longer.

While no news of its orbital parameters have been released, skywatchers and amateur satellite trackers have been keeping an eye on where the OTV-2 has been. After launch it had a 331 km (206-mile)orbit inclined 42.8 degrees to the equator, but in the summer of 2011 the orbit was raised slightly to 337 km (209 miles).

Vandenberg said they would provide more details when available.

Source: Vandenberg AFB

X-37B – The Gift That Keeps On Giving


Video provided courtesy of United Launch Alliance

The United States Air Force’s second flight of the X-37B – is headed into extra innings. Known as the Orbital Test Vehicle 2 (OTV-2) this robotic mini space shuttle launched from Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41) on Mar. 5, 2011. Although the U.S. Air Force has kept mum regarding details about the space plane’s mission – it has announced that the OTV-2 has exceeded its endurance limit of 270 days on orbit as of the end of November.

The OTV is launched atop a United Launch Alliance (ULA) Atlas V 501 rocket. The space plane is protected within a fairing until it reaches orbit. After separation, the diminutive shuttle begins its mission.

OTV mission USA-226, as it is officially known, is by all accounts going smoothly and the spacecraft is reported to be in good health. The U.S. Air Force has not announced when OTV-2 will be directed to land.

[/caption]

The fact that the space plane will continue to orbit beyond what its stated limits are highlights that the OTV has greater capabilities than what was officially announced. The first OTV flight launched in April of 2011 and landed 224 days later at Vandenberg Air Force Base in California. The U.S. Air Force is undoubtedly being more judicious with fuel stores on board the robotic spacecraft, allowing for a longer duration flight.

Much like NASA’s retired fleet of space shuttle orbiters, the OTV has a payload bay that allows for payloads and experiments to be conducted on-orbit. What payloads the U.S. Air Force has had on either mission – remains a secret.

Boeing has announced that the X-37B could be modified to conduct crewed missions to and from orbit. Tentatively named the X-37C, this spacecraft would be roughly twice the size of its unmanned cousin. If this variant goes into service it would be used to transport astronauts to and from the orbiting International Space Station (ISS).

OTV USA-226 launched on Mar. 5, 2011 and has helped prove out the mini space plane's design. Photo Credit: Alan Walters/awaltersphoto.com

The X-37B has become a bit controversial of late. Members of the Chinese press have stated that the space plane raises concerns of an arms race in space. Xinhua News Agency and China Daily have expressed concern that the OTVs could be used to deliver weapons to orbit. The Pentagon has flatly denied these allegations. The clandestine nature of these flights have led to a wide variety of theories as to what the OTVs have been used to ferry to orbit.

Crewed Variant of X-37 Space Plane Proposed

[/caption]
As reported online at Space.com, the Boeing Company is already working on the CST-100 space taxi as a means of transportation to and from the International Space Station (ISS). But the aerospace firm is not content with just this simple space capsule and is looking into whether-or-not another of Boeing’s current offerings – the X-37B space plane could be modified to one day ferry crew to and from the orbiting laboratory as well.

proposed variant of the spacecraft, dubbed the X-37C, is being considered for a role that has some similarities to the cancelled X-38 Crew Return Vehicle (CRV). The announcement was made at a conference hosted by the American Institute of Aeronautics and Astronautics (AIAA) and reported on Space.com.

The USAF has already launched two of the X-37B Orbital Text Vehicles (OTV) from Cape Canaveral Air Force Station in Florida. Photo Credit: ULA/Pat Corkery

The X-37B or Orbital Test Vehicle (OTV) has so far been launched twice by the U.S. Air Force from Cape Canaveral Air Force Station in Florida. One of the military space planes completed the craft’s inaugural mission, USA-212, on Apr. 22, 2010. The mini space plane reentered Earth’s atmosphere and conducted an autonomous landing at Vandenberg Air Force on Dec. 3, 2010.

The U.S. Air Force then went on to launch the second of the space planes on mission USA-226 on Mar. 5, 2011. With these two successful launches, the longest-duration stay on orbit by a reusable vehicle and a landing under its belt, some of the vehicle’s primary systems (guidance, navigation, thermal protection and aerodynamics among others) are now viewed as having been validated. The vehicle has performed better than expected with the turnaround time being less than predicted.

If the X-37C is produced, it will be roughly twice the size of its predecessor. The X-37B is about 29 feet long; this new version of the mini shuttle would be approximately 48 feet in length. The X-37C is estimated at being approximately 165-180 percent larger than the X-37B. This increase in the size requires a larger launch vehicle.

This larger size also highlights plans to have the spacecraft carry 5 or 6 astronauts – with room for an additional crew member that is immobilized on a stretcher. The X-38, manufactured by Scaled Composites, was designed, built and tested to serve as a lifeboat for the ISS. In case of an emergency, crew members on the ISS would have entered the CRV and returned to Earth – a role that now could possibly be filled by the X-37C. The key difference being that the CRV only reached the point of atmospheric drop tests – the X-37B has flown into space twice.

Certain elements of the X-37C proposal highlight mission aspects of the cancelled X-38 Crew Return Vehicle. Photo Credit: NASA.gov

The crewed variant of the X-37 space plane would contain a pressurized compartment where the payload is normally stored, it would have a hatch that would allow for astronauts to enter and depart the spacecraft. Another hatch would be located on the main body of the mini shuttle so as to allow access to the vehicle on the ground. The X-37C, like its smaller cousin, would be able to rendezvous, dock, reenter the atmosphere and land remotely, without the need of a pilot. Acknowledging the need for pilots to control their own craft however, the X-37C would be capable of accomplishing these space flight requirements under manual control as well.

As mentioned in the Space.com article, one of the other selling points for the X-37C is its modular nature. Different variants could be used for crewed flights or unmanned missions that could return delicate cargo from the ISS. Neither the Russian Soyuz spacecraft, nor commercially-developed capsules are considered as appropriate means of returning biological or crystal experiments to Earth due to the high rate of acceleration that these vehicles incur upon atmospheric reentry. By comparison the X-37B experiences just 1.5 “g” upon reentry.

The launch vehicle that would send the proposed X-37C to orbit would be the United Launch Alliance Atlas V rocket. In provided images the X-37C is shown utilizing a larger version of the Atlas booster and without the protective fairing that covered the two X-37B space planes that were launched.