Gallery: WISE’s Greatest Hits

WISE First Light image. Image credit: NASA/JPL-Caltech/UCLA

[/caption]

The WISE mission is now over, with the spacecraft taking its final image on Feb. 1, 2011. WISE was a “cool” infrared mission, with the optics chilled to less than 20 degrees centigrade above absolute zero (20 Kelvins). In its low Earth orbit (523 km above the ground), the spacecraft explored the entire Universe and collected infrared light coming from everywhere in space and studied asteroids, the coolest and dimmest stars, and the most luminous galaxies. Expect to hear and see more from WISE, however in the future. More images will be released from the team in April and in the spring of 2012. Here’s a look back at some of the great images from WISE’s 13 months in space:

The red dot at the center of this image is the first near-Earth asteroid discovered by NASA's Wide-Field Infrared Survey Explorer, or WISE Image credit: NASA/JPL-Caltech/UCLA
The red smudge at the center of this picture is the first comet discovered by NASA's Wide-Field Infrared Survey Explorer, or WISE. Image credit: NASA/JPL-Caltech/UCLA
The immense Andromeda galaxy, also known as Messier 31 or simply M31, is captured in full in this February 2010 image from WISE. credit: NASA/JPL-Caltech/UCLA
NGC 3603, as seen by WISE. credit: NASA/JPL-Caltech/UCLA
NGC 1514, sometimes called the Crystal Ball nebula shows a new double ring feature in an image from WISE. Image credit: NASA/JPL-Caltech/UCLA
This image from WISE shows the Tadpole nebula. Image credit: NASA/JPL-Caltech/UCLA
The Heart and Soul nebulae are seen in this infrared mosaic from WISE. Image credit: NASA/JPL-Caltech/UCLA
An image released in August 2010 from WISE image of the Small Magellanic Cloud. Image credit: NASA/JPL-Caltech/WISE Team
This oddly colorful nebula is the supernova remnant IC 443 as seen by WISE. Image credit: NASA/JPL-Caltech/UCLA
The last image that will ever be taken by the WISE spacecraft. Credit: NASA/JPL-Caltech/WISE Team

And if you want to see how it all started, here’s a video of WISE’s launch:

Mission Complete: NEOWISE Concludes Hunt for Near-Earth Objects

During its one-year mission, NASA's Wide-field Infrared Survey Explorer, or WISE, mapped the entire sky in infrared light. Among the multitudes of astronomical bodies that have been discovered by the NEOWISE portion of the WISE mission are 20 comets. Image credit: NASA/JPL-Caltech/UCLA

[/caption]

The WISE spacecraft has completed a special mission called NEOWISE, looking for small bodies in the solar system, and has discovered a plethora of previously unknown objects. The NEOWISE mission found 20 comets, more than 33,000 asteroids in the main belt between Mars and Jupiter, and 134 near-Earth objects (NEOs). More data from NEOWISE also have the potential to reveal a brown dwarf even closer to us than our closest known star, Proxima Centauri, if such an object does exist. Likewise, if there is a hidden gas-giant planet in the outer reaches of our solar system, data from WISE and NEOWISE could detect it.

“WISE has unearthed a mother lode of amazing sources, and we’re having a great time figuring out their nature,” said Edward (Ned) Wright, the principal investigator of WISE at UCLA.

“Even just one year of observations from the NEOWISE project has significantly increased our catalog of data on NEOs and the other small bodies of the solar systems,” said Lindley Johnson, NASA’s program executive for the NEO Observation Program.

The NEOs are asteroids and comets with orbits that come within 45 million kilometers (28 million miles) of Earth’s path around the sun.

The NEOWISE mission made use of the the WISE spacecraft, the Wide-field Infrared Survey Explorer that launched in December 2009. WISE scanned the entire celestial sky in infrared light about 1.5 times. It captured more than 2.7 million images of objects in space, ranging from faraway galaxies to asteroids and comets close to Earth.

However, in early October 2010, after completing its prime science mission, the spacecraft ran out of the frozen coolant that keeps its instrumentation cold. But two of its four infrared cameras remained operational, which were still optimal for asteroid hunting, so NASA extended the NEOWISE portion of the WISE mission by four months, with the primary purpose of hunting for more asteroids and comets, and to finish one complete scan of the main asteroid belt.

Now that NEOWISE has successfully completed a full sweep of the main asteroid belt, the WISE spacecraft will go into hibernation mode and remain in polar orbit around Earth, where it could be called back into service in the future.

In addition to discovering new asteroids and comets, NEOWISE also confirmed the presence of objects in the main belt that had already been detected. In just one year, it observed about 153,000 rocky bodies out of approximately 500,000 known objects. Those include the 33,000 that NEOWISE discovered.

NEOWISE also observed known objects closer and farther to us than the main belt, including roughly 2,000 asteroids that orbit along with Jupiter, hundreds of NEOs and more than 100 comets.

These observations will be key to determining the objects’ sizes and compositions. Visible-light data alone reveal how much sunlight reflects off an asteroid, whereas infrared data is much more directly related to the object’s size. By combining visible and infrared measurements, astronomers also can learn about the compositions of the rocky bodies — for example, whether they are solid or crumbly. The findings will lead to a much-improved picture of the various asteroid populations.

NEOWISE took longer to survey the whole asteroid belt than WISE took to scan the entire sky because most of the asteroids are moving in the same direction around the sun as the spacecraft moves while it orbits Earth. The spacecraft field of view had to catch up to, and lap, the movement of the asteroids in order to see them all.

“You can think of Earth and the asteroids as racehorses moving along in a track,” said Amy Mainzer, the principal investigator of NEOWISE at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “We’re moving along together around the sun, but the main belt asteroids are like horses on the outer part of the track. They take longer to orbit than us, so we eventually lap them.”

NEOWISE data on the asteroid and comet orbits are catalogued at the NASA-funded International Astronomical Union’s Minor Planet Center, a clearinghouse for information about all solar system bodies at the Smithsonian Astrophysical Observatory in Cambridge, Mass. The science team is analyzing the infrared observations now and will publish new findings in the coming months.

The first batch of observations from the WISE mission will be available to the public and astronomical community in April.

Source: NASA

The Real News about Ophiuchus: There’s a Runaway Star Plowing Through It

The blue star near the center of this image is Zeta Ophiuchi, a runaway star plowing through the constellation Ophiuchus. Credit: NASA/JPL-Caltech/UCLA

Lots of folks seem to be up in arms about the “new” sign in the zodiac, Ophiuchus, and the news that all the star signs are no longer in sync with the actual constellations. Of course, *most* of us already knew that news is centuries old, and that the zodiac has no effect whatsoever on our lives and it never has (most readers of Universe Today, anyway!) Now for some real news about Ophiuchus: NASA’s Wide-field Infrared Survey Explorer, or WISE has found a massive, runaway star, called Zeta Ophiuchi that is plowing through a cloud of space dust in Ophiuchus. The result is a brilliant bow shock, seen here as a yellow arc in this stunning new image.
Continue reading “The Real News about Ophiuchus: There’s a Runaway Star Plowing Through It”

WISE Captures an Infrared Shock Wave

This oddly colorful nebula is the supernova remnant IC 443 as seen by WISE. Image credit: NASA/JPL-Caltech/UCLA

[/caption]

From a JPL press release:

A circular rainbow appears like a halo around an exploded star in this new view of the IC 443 nebula from NASA’s Wide-field Infrared Survey Explorer, or WISE.

When massive stars die, they explode in tremendous blasts, called supernovae, which send out shock waves. The shock waves sweep up and heat surrounding gas and dust, creating supernova remnants like the one pictured here. The supernova in IC 443 happened somewhere between 5,000 and 10,000 years ago.

In this WISE image, infrared light has been color-coded to reveal what our eyes cannot see. The colors differ primarily because materials surrounding the supernova remnant vary in density. When the shock waves hit these materials, different gases were triggered to release a mix of infrared wavelengths.

The supernova remnant’s northeastern shell, seen here as the violet-colored semi-circle at top left, is composed of sheet-like filaments that are emitting light from iron, neon, silicon and oxygen gas atoms and dust particles heated by a fast shock wave traveling at about 100 kilometers per second, or 223,700 mph.

The smaller southern shell, seen in bright bluish colors, is constructed of clumps and knots primarily emitting light from hydrogen gas and dust heated by a slower shock wave traveling at about 30 kilometers per second, or 67,100 miles per hour. In the case of the southern shell, the shock wave is interacting with a nearby dense cloud. This cloud can be seen in the image as the greenish dust cutting across IC 443 from the northwest to southeast.

IC 443 can be found near the star Eta Geminorum, which lies near Castor, one of the twins in the constellation Gemini.

WISE Captures a Glowing Cylinder in Space

NGC 1514, sometimes called the "Crystal Ball" nebula shows a new double ring feature in an image from WISE. Image credit: NASA/JPL-Caltech/UCLA

[/caption]

It’s not like we’ve never seen the planetary nebula NGC 1514 before, but we’ve never seen it though WISE’s infrared eyes, until now. And in a stunning surprise, cylindrical rings appear to be encircling the dying star, like a neon-lit carousel, or perhaps like rolling tire surrounding a glowing blob. “I just happened to look up one of my favorite objects in our WISE catalogue and was shocked to see these odd rings,” said Michael Ressler, a member of the WISE science team at JPL. “This object has been studied for more than 200 years, but WISE shows us it still has surprises.

Space station from the movie 2001: A Space Odyssey.

At first glance the rings look like the double-ringed space station in the movie 2001: A Space Odyssey. (Too bad the Bad Astronomer beat me to that likeness. He also compared it to a tuna can.)

Other people see different things in this image.

“I am reminded of the jellyfish exhibition at the Monterey Bay Aquarium — beautiful things floating in water, except this one is in space,” said Edward (Ned) Wright, the principal investigator of the WISE mission at UCLA, and a co-author of a paper on the findings, reported in the Astronomical Journal.

WISE was able to spot the rings for the first time because their dust is being heated and glows with the infrared light that WISE can detect. In visible-light images, the rings are hidden from view, overwhelmed by the brightly fluorescing clouds of gas.

Here’s what NGC 1514 looks like in visible light from a ground observatory:

NGC1514 in visible light. Image credit: Digitized Sky Survey/STScI

The object is actually a pair of stars, seen as a single dot at the center of the blue orb. One star is a dying giant somewhat heavier and hotter than our sun, and the other was an even larger star that has now contracted into a dense body called a white dwarf. As the giant star ages, it sheds some its outer layers of material. An inner shell of ejected material is seen in bright, light blues. An outer shell can also be seen in more translucent shades of blue.

This planetary nebula is also called the “Crystal Ball” nebula, and Ressler said although NGC 1514’s structure looks unique, is probably similar in overall geometry to other hour-glass nebulae, such as the Engraved Hourglass Nebula.

Planetary Nebula MyCn18: An Hourglass Pattern Around a Dying Star. Credit: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA.

The structure looks different in WISE’s view because the rings are detectable only by their heat; they do not fluoresce at visible wavelengths, as do the rings in the other objects.

The WISE science team says that more oddballs like NGC 1514 are sure to turn up in the plethora of WISE data — the first batch of which will be released to the astronomical community in spring 2011.

Source: JPL

WISE Cryostat is Depleting

An image released in August 2010 from WISE image of the Small Magellanic Cloud. Image credit: NASA/JPL-Caltech/WISE Team

[/caption]

NASA’s Wide-field Infrared Survey Explorer, or WISE, is losing its cool. The spacecraft is running out of the frozen coolant needed to keep its heat-sensitive instrument chilled, and will only be in operation for 2-3 more months. While the spacecraft was designed to be rather short-lived – 7 to 10 months — it still is sad to see the mission winding down. But WISE has completed its primary mission, a full scan of the entire sky in infrared light, which was accomplished by July 17, 2010. The mission has taken more than 1.5 million snapshots so far, uncovering hundreds of millions of objects, including asteroids, stars and galaxies. It has discovered more than 29,000 new asteroids to date, more than 100 near-Earth objects and 15 comets.

The telescope has two coolant tanks that keep the spacecraft’s normal operating temperature at 12 Kelvin (minus 438 degrees Fahrenheit). The outer, secondary tank is now depleted, causing the temperature to increase. One of WISE’s infrared detectors, the longest-wavelength band most sensitive to heat, stopped producing useful data once the telescope warmed to 31 Kelvin (minus 404 degrees Fahrenheit). The primary tank still has a healthy supply of coolant, and data quality from the remaining infrared detectors remains high.

WISE is continuing a second survey of about one-half the sky as originally planned. It’s possible the remaining coolant will run out before that scan is finished. Scientists say the second scan will help identify new and nearby objects, as well as those that have changed in brightness. It could also help to confirm oddball objects picked up in the first scan.

NASA is hoping to find more Near Earth Objects with WISE’s remaining days of operations.
“WISE’s prime mission was to do an infrared background map,” said Lindley Johnson, program executive for the Near-Earth Objects Observation program at NASA, speaking at a workshop this week to define objectives for exploring asteroids. “But we realized in talking with scientists that it would also make a good asteroid detector by comparing images. It has done a good job of finding a lot of objects for us.”

Source: NASA

WISE Mission Completes All-sky Infrared Survey

This view of the Pleiades star cluster is a composite of hundreds of WISE images, a tiny fraction of all those collected to complete the full-sky survey. Image credit: NASA/JPL-Caltech/UCLA

[/caption]

If you take a lot of digital pictures, you’re probably familiar with the frustration of keeping track of dozens of files, and always running out of hard drive space to store them. Well, the scientists and engineers on NASA’s Wide-field Infrared Survey Explorer (WISE) mission have no pity for you. Their spacecraft just finished photographing the entire sky in exquisite detail: a total of 1.3 million photos.

“The eyes of WISE have not blinked since launch,” said William Irace, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Both our telescope and spacecraft have performed flawlessly and have imaged every corner of our universe, just as we planned.”

WISE surveys the sky in strips as it orbits the earth. It takes six months of constant observing to map the entire sky. By pointing at every part of the sky, astronomical surveys deliver excellent data covering both well-known objects and those that have never been seen before.

“WISE is filling in the blanks on the infrared properties of everything in the universe from nearby asteroids to distant quasars,” said Peter Eisenhardt of JPL, project scientist for WISE. “But the most exciting discoveries may well be objects we haven’t yet imagined exist.”

One example of a well-known object seen in new light by WISE is the Pleiades cluster: a group of young blue stars shrouded by dust that the cluster is currently passing through. In WISE’s false-color infrared vision, the hot stars look blue but the cooler dust clouds give off longer wavelengths of infrared light, causing them to glow in shades of yellow and green.

The WISE survey is particularly significant because such a wide range of objects in the universe are visible in infrared light. Giant molecular clouds glow in infrared light, as do brown dwarfs – objects that are bigger than planets but smaller than true stars. WISE can also see ultra-bright, extremely distant galaxies whose visible light has been stretched into the infrared by the expansion of the universe during its multi-billion-year journey.

The recently completed WISE survey also observed 100,000 asteroids in our solar system, many of which had never been seen before. 90 of the newly discovered asteroids are near-earth objects, whose orbits cross our own, making them potentially dangerous but also potential targets for future mission.

You might think that 1.3 million pictures would be plenty, but WISE will keep mapping the sky for another three months, covering half of the sky again and allowing astronomers to search for changes. The mission will end when the spacecraft’s solid hydrogen coolant finally runs out and the infrared detectors warm up (they don’t work as well when they are warm enough to emit the same wavelengths of infrared light that they are meant to detect).

But even as the telescope warms up, the astronomers on the WISE team will just be getting warmed up too. With nearly two million images, they will be busy making new discoveries for years to come.

WISE Pictures the Tadpole Nebula with a String of Pearls

This image from WISE shows the Tadpole nebula. Image credit: NASA/JPL-Caltech/UCLA

[/caption]

The Tadpole nebula is looking very stylish in this new infrared image from the WISE spacecraft, NASA’s Wide-field Infrared Survey Explorer. An asteroid appears like a string of pearls — seen as a line of yellow-green dots in the boxes near center — in this stitched together mosaic. The Tadpole is a star-forming region in the Auriga constellation about 12,000 light-years from Earth. As WISE scanned the sky, it happened to catch asteroid 1719 Jens in action, moving across WISE’s field of view. A second asteroid was also observed cruising by, as highlighted in the boxes near the upper left (the larger boxes are blown-up versions of the smaller ones).

More on this image below, but the WISE team received a bit of bad news this week.

WISE principal investigator Ned Wright and his team had proposed a three-month “warm” extension of the mission after the supply of hydrogen that cools the telescope and detectors on board runs out. However, according to an article in Space News, NASA’s 2010 Astrophysics Senior Review Committee recommended that the mission not be extended, and end as originally planned in October of this year.

While WISE is expected to produce significant results, the committee said there was not adequate scientific justification to continue the mission.

The proposed additional three months, known as Warm WISE – where the spacecraft would observe in two of the four infrared wavelengths it has available when WISE is cooled –would have added $6.5 million to the program’s $320 million price tag.

Currently, WISE produces approximately 7,500 images a day.

And this latest image is a “gem.”

It consists of twenty-five frames, taken at all four of the wavelengths and were combined into one image: infrared light of 3.4 microns is color-coded blue: 4.6-micron light is cyan; 12-micron-light is green; and 22-micron light is red.

But wait, there’s more! Also visible in the image are two satellites orbiting above WISE (highlighted in the ovals). They streak through the image, appearing as faint green trails. The apparent motion of asteroids is slower than satellites because asteroids are much more distant, and thus appear as dots that move from one WISE frame to the next, rather than streaks in a single frame.

This Tadpole region is chock full of stars as young as only a million years old — infants in stellar terms — and masses over 10 times that of our sun. It is called the Tadpole nebula because the masses of hot, young stars are blasting out ultraviolet radiation that has etched the gas into two tadpole-shaped pillars, called Sim 129 and Sim 130. These “tadpoles” appear as the yellow squiggles near the center of the frame. The knotted regions at their heads are likely to contain new young stars. WISE’s infrared vision is helping to ferret out hidden stars such as these.

WISE is an all-sky survey, snapping pictures of the whole sky, including everything from asteroids to stars to powerful, distant galaxies.

Sources: JPL, Space News

Beautiful Cosmic Barbeque Pit

A new infrared image from NASA's Wide-field Infrared Survey Explorer, or WISE, shows a cosmic barbeque pit, full of PAHS. Image credit: NASA/JPL-Caltech/UCLA

NASA’s Wide-field Infrared Survey Explorer, or WISE has been a busy spacecraft since its launch on Dec. 14, 2009. It has found asteroids and comets, and now has found a cosmic barbeque pit. Well, not really, but the green material in the cloud of gas and dust surrounding the Berkeley 59 cluster is from heated polycyclic aromatic hydrocarbons, (PAHs) molecules that can be found on Earth in barbecue pits, exhaust pipes and other places where combustion has occurred. The “coals,” or the glowing red is warm dust heated by hot young stars within the nebula.
Continue reading “Beautiful Cosmic Barbeque Pit”

Astronomical Eye Candy from WISE First Images

The immense Andromeda galaxy, also known as Messier 31 or simply M31, is captured in full in this February 2010 image from WISE. credit: NASA/JPL-Caltech/UCLA

[/caption]

The WISE (Wide-field Infrared Survey Explorer) mission isn’t wasting any time in making observations and releasing images. Already the new infrared observatory has spied its first comet and first near Earth asteroid, and today released a “sweet” collection of eye candy from across the universe. “We’ve got a candy store of images coming down from space,” said Edward (Ned) Wright of UCLA, the principal investigator for WISE. “Everyone has their favorite flavors, and we’ve got them all.”

Four new, processed pictures illustrate a sampling of the mission’s targets — a bursting star-forming cloud, a faraway cluster of hundreds of galaxies, a wispy comet, and above, the grand Andromeda galaxy as we’ve never seen it before, with new details of its ringed arms of stars .

NGC 3603, as seen by WISE. credit: NASA/JPL-Caltech/UCLA

Another image shows a bright and choppy star-forming region called NGC 3603, lying 20,000 light-years away in the Carina spiral arm of our Milky Way galaxy. This star-forming factory is churning out batches of new stars, some of which are monstrously massive and hotter than the sun. The hot stars warm the surrounding dust clouds, causing them to glow at infrared wavelengths.

Siding Spring Comet via WISE. credit: NASA/JPL-Caltech/UCLA

This image shows the beauty of a comet called Siding Spring. As the comet parades toward the sun, it sheds dust that glows in infrared light visible to WISE. The comet’s tail, which stretches about 10 million miles, looks like a streak of red paint. A bright star appears below it in blue. WISE is expected to find perhaps dozens of comets, and bagged its first one on January 22, 2010. WISE will help unravel clues locked inside comets about how our solar system came to be.

WISE's view of the Fornax Cluster. credit: NASA/JPL-Caltech/UCLA

The fourth WISE picture is of the Fornax cluster, a region of hundreds of galaxies all bound together into one family. These galaxies are 60 million light-years from Earth. The mission’s infrared views reveal both stagnant and active galaxies, providing a census of data on an entire galactic community.

“All these pictures tell a story about our dusty origins and destiny,” said Peter Eisenhardt, the WISE project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “WISE sees dusty comets and rocky asteroids tracing the formation and evolution of our solar system. We can map thousands of forming and dying solar systems across our entire galaxy. We can see patterns of star formation across other galaxies, and waves of star-bursting galaxies in clusters millions of light years away.”

Since WISE began its scan of the entire sky in infrared light on Jan. 14, the space telescope has beamed back more than a quarter of a million raw, infrared images. The mission will scan the sky one-and-a-half times by October. At that point, the frozen coolant needed to chill its instruments will be depleted. However, the team predicts the spacecraft will be still be operational for 3 additional months following the 10 month prime mission.

So, stay tuned for more images from WISE!

Source: NASA