Who Discovered Uranus?

If you’ve got really good eyesight and can find a place where the light pollution is non-existent, you might be able to see Uranus without a telescope. It’s only possible with the right conditions, and if you know exactly where to look. And for thousands of years, scholars and astronomers were doing just that. But given that it was just a tiny pinprick of light, they believed Uranus was a star.

It was not until the late 18th century that the first recorded observation that recognized Uranus as being a planet took place. This occurred on March 13th, 1781, when British astronomer Sir William Herschel observed the planet using a telescope of his own creation. From this point onwards, Uranus would be recognized as the seventh planet and the third gas giant of the Solar System.

Observations pre-18th Century:

The first recorded instance of Uranus being spotted in the night sky is believed to date back to Classical Antiquity.  During the 2nd century BCE, Hipparchos – the Greek astronomer, mathematician and founder of trigonometry – apparently recorded the planet as a star in his star catalogue (completed in 129 BCE).

William Herschel’s telescope, through which the planet Uranus was first observed. Credit: Wikipedia Commons

This catalog was later incorporated into Ptolemy’s Almagest, which became the definitive source for Islamic astronomers and for scholars in Medieval Europe for over one-thousand years. During the 17th and 18th centuries, multiple recorded sightings were made by astronomers who also catalogued it as being a star.

This included English astronomer John Flamsteed, who in 1690 observed the star on six occasions and catalogued it as a star in the Taurus constellation (34 Tauri). During the mid-18th century, French astronomer Pierre Lemonnier made twelve recorded sightings, and also recorded it as being a star. It was not until March 13th, 1781, when William Herschel observed it from his garden house in Bath, that Uranus’ true nature began to be revealed.

Hershel’s Discovery:

On the evening in question –  March 13th, 1781 – William Herschel was surveying the sky with his telescope, looking for binary stars. His first report on the object was recorded on April 26th, 1781. Initially, he described it as being a “Nebulous star or perhaps a comet”, but later settled on it being a comet since it appeared to have changed its position in the sky.

Portrait of Sir William Herschel, by Lewis Francis Abbot (1784). Credit: Wikipedia Commons/National Portrait Gallery

When he presented his discovery to the Royal Society, he maintained this theory, but also likened it to a planet. As was recorded in the Journal of the Royal Society and Royal Astronomical Society on the occasion of his presentation:

“The power I had on when I first saw the comet was 227. From experience I know that the diameters of the fixed stars are not proportionally magnified with higher powers, as planets are; therefore I now put the powers at 460 and 932, and found that the diameter of the comet increased in proportion to the power, as it ought to be, on the supposition of its not being a fixed star, while the diameters of the stars to which I compared it were not increased in the same ratio. Moreover, the comet being magnified much beyond what its light would admit of, appeared hazy and ill-defined with these great powers, while the stars preserved that lustre and distinctness which from many thousand observations I knew they would retain. The sequel has shown that my surmises were well-founded, this proving to be the Comet we have lately observed.”

While Herschel would continue to maintain that what he observed was a comet, his “discovery” stimulated debate in the astronomical community about what Uranus was. In time, astronomers like Johann Elert Bode would conclude that it was a planet, based on its nearly-circular orbit. By 1783, Herschel himself acknowledged that it was a planet to the Royal Society.

Naming:

As he lived in England, Herschel originally wanted to name Uranus after his patron, King George III. Specifically, he wanted to call it Georgium Sidus (Latin for “George’s Star”), or the Georgian Planet. Although this was a popular name in Britain, the international astronomy community didn’t think much of it, and wanted to follow the historical precedent of naming the planets after ancient Greek and Roman gods.

Large floor mosaic from a Roman villa in Sassoferrato, Italy (ca. 200–250 CE). Aion (Uranus), the god of eternity, stands above Tellus (Gaia) and her four children (the seasons). Credit: Wikipedia Commons/Bibi Saint-Poi

Consistent with this, Bode proposed the name Uranus in a 1782 treatise. The Latin form of Ouranos, Uranus was the grandfather of Zeus (Jupiter in the Roman pantheon), the father of Cronos (Saturn), and the king of the Titans in Greek mythology. As it was discovered beyond the orbits of Jupiter and Saturn, the name seemed highly appropriate.

In the following century, Neptune would be discovered, the last of the eight official planets that are currently recognized by the IAU. And by the 20th century, astronomers would discovery Pluto and other minor planets within the Kuiper Belt. The process of discovery has been ongoing, and will likely continue for some time to come.

We have written many articles about planetary discovery here at Universe Today. Here’s Who Discovered Mercury?, Who Discovered Venus?, Who Discovered Earth?, Who Discovered Mars?, Who Discovered Jupiter?, Who Discovered Saturn?, Who Discovered Neptune?, and Who Discovered Pluto?

Here’s an article from the Hubble educational site about the discovery of Uranus, and here’s the NASA Solar System Exploration page on Uranus.

We have recorded an episode of Astronomy Cast just about Uranus. You can access it here: Episode 62: Uranus.

Sources:

What is Uranus Named After?

The period known as the Scientific Revolution (ca. 16th to the 18th century) was a time of major scientific upheaval. In addition to advances made in mathematics, chemistry, and the natural sciences, several major discoveries were made in the field of astronomy. Because of this, our understanding of the size and structure of the Solar System was forever revolutionized.

Consider the discovery of Uranus. While this planet had been viewed on many occasions by astronomers in the past, it was only with the birth of modern astronomy that its true nature came to be understood. And with William Herschel‘s discovery in the 18th century, the planet would come to be officially named and added to the list of known Solar Planets.

Past Observations:

The first recorded instance of Uranus being spotted in the night sky is believed to date back to the 2nd century BCE. At this time, Hipparchos – the Greek astronomer, mathematician and founder of trigonometry – apparently recorded the planet as a star in his star catalogue (completed in 129 BCE).

Large floor mosaic from a Roman villa in Sassoferrato, Italy (ca. 200–250 CE). Aion (Uranus), the god of eternity, stands above Tellus (Gaia) and her four children (the seasons). Credit: Wikipedia Commons/Bibi Saint-Poi

This catalog was later incorporated into Ptolemy’s Almagest, which became the definitive source for Islamic astronomers and for scholars in Medieval Europe for over one-thousand years. During the 17th and 18th centuries, multiple recorded sightings were made by astronomers who catalogued it as being a star.

This included English astronomer John Flamsteed, who in 1690 observed the star on six occasions and catalogued it as a star in the Taurus constellation (34 Tauri). During the mid-18th century, French astronomer Pierre Lemonnier made twelve recorded sightings, and also recorded it as being a star. It was not until March 13th, 1781, when William Herschel observed it from his garden house in Bath, that Uranus’ true nature began to be revealed.

Discovery:

Herschel’s first report on the object was recorded on April 26th, 1781. Initially, he described it as being a “Nebulous star or perhaps a comet”, but later settled on it being a comet since it appeared to have changed its position in the sky. When he presented his discovery to the Royal Society, he maintained this theory, but also likened it to a planet.

Replica of Herschel’s Seven-foot Reflecting Telescope, located at the Herschel Museum of Astronomy. Credit: herschelmuseum.org.uk

As was recorded in the Journal of the Royal Society and Royal Astronomical Society on the occasion of his presentation:

“The power I had on when I first saw the comet was 227. From experience I know that the diameters of the fixed stars are not proportionally magnified with higher powers, as planets are; therefore I now put the powers at 460 and 932, and found that the diameter of the comet increased in proportion to the power, as it ought to be, on the supposition of its not being a fixed star, while the diameters of the stars to which I compared it were not increased in the same ratio. Moreover, the comet being magnified much beyond what its light would admit of, appeared hazy and ill-defined with these great powers, while the stars preserved that lustre and distinctness which from many thousand observations I knew they would retain. The sequel has shown that my surmises were well-founded, this proving to be the Comet we have lately observed.”

While Herschel would continue to maintain that what he observed was a comet, his “discovery” stimulated debate in the astronomical community about what Uranus was. In time, astronomers like Johann Elert Bode would conclude that it was a planet, based on its nearly-circular orbit. By 1783, Herschel himself acknowledged that it was a planet to the Royal Society.

Name and Meaning:

As he lived in England, Herschel originally wanted to name Uranus after his patron, King George III. Specifically, he wanted to call it Georgium Sidus (Latin for “George’s Star”), or the Georgian Planet. Although this was a popular name in Britain, the international astronomy community didn’t think much of it, and wanted to follow the historical precedent of naming the planets after ancient Greek and Roman gods.

These two pictures of Uranus — one in true color (left) and the other in false color — were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Credit: NASA/JPL

Consistent with this, Bode proposed the name Uranus in a 1782 treatise. The Latin form of Ouranos, Uranus was the grandfather of Zeus (Jupiter in the Roman pantheon), the father of Cronos (Saturn), and the king of the Titans in Greek mythology. As it was discovered beyond the orbits of Jupiter and Saturn, the name seemed highly appropriate. As he would later write in his 1784 book, “From the Newly Discovered Planet“:

“Already in the pre-read at the local Natural History Society on 12th March 1782 treatise, I have the father’s name from Saturn, namely Uranus, or as it is usually with the Latin suffix, proposed Uranus, and have since had the pleasure that various astronomers and mathematicians, cited in their writings or letters to me approving this designation. In my view, it is necessary to follow the mythology in this election, which had been borrowed from the ancient name of the other planets; because in the series of previously known, perceived by a strange person or event of modern times name of a planet would very noticeable. Diodorus of Cilicia tells the story of Atlas, an ancient people that inhabited one of the most fertile areas in Africa, and looked at the sea shores of his country as the homeland of the gods. Uranus was her first king, founder of their civilized life and inventor of many useful arts. At the same time he is also described as a diligent and skilful astronomers of antiquity … even more: Uranus was the father of Saturn and the Atlas, as the former is the father of Jupiter.”

There were some holdouts to this new name, largely in Britain, where the name Georgium Sidus remained popular. Nevertheless, Herschel’s proposal would become universally accepted by 1850. Uranus was the only planet in the Solar System named after a god from Greek mythology, rather than using the Roman counterpart’s name. 

Other Names:

While Uranus remains the widely-recognized name for the Solar System’s seventh planet (and third gas giant), other cultures have recognized it by various other names. For example in traditional Chinese astronomy, it is known as Tianwángxing, which means literally “Sky King Star”.

Uranus. Image credit: Hubble
Uranus, as imaged by the Hubble Space Telescope. Credit: NASA/Hubble

The same name is recognized in the Korean, Japanese and Vietnamese astronomical traditions. To the Aztecs (and other Nahuatl-speaking peoples), Uranus was known as “Ilhuicateocitlalli” – named after the word for “sky” (“ilhuicatl”) – and also as “Xiuhteuccitlalli”, the Aztec god of fire, day, and heat. Many other cultures recognized Uranus in their mythological traditions and assigned various names.

The discovery of Uranus was one of several that would follow from the 18th century onward. In time, Neptune, the Asteroid Belt, Ceres, Vesta, Pluto and the Kuiper Belt would be added to the mix, thus creating a model of the Solar System that would endure until the early 21st century – when new bodies were discovered beyond the orbit that Neptune that would lead to the nomenclature debate.

We have written many interesting articles on Uranus here at Universe Today. Here’s The Planet Uranus, Ten Interesting Facts About Uranus, Why is Uranus on its Side?, Tilt of Saturn, and Who Discovered Uranus?

For more information, here’s an article from the Hubble educational site about the discovery of Uranus, and here’s NASA’s Solar System Exploration page on Uranus.

We have recorded an episode of Astronomy Cast just about Uranus. You can access it here: Episode 62: Uranus.

Sources:

Messier 5 (M5) – The NGC 5904 Globular Cluster

In the late 18th century, Charles Messier was busy hunting for comets in the night sky, and noticed several “nebulous” objects. After initially mistaking them for the comets he was seeking, he began to compile a list of these objects so other astronomers would not make the same mistake. Known as the Messier Catalog, this list consists of 100 objects, consisting of distant galaxies, nebulae, and star clusters.

Among the many famous objects in this catalog is the M5 globular star cluster (aka. NGC 5904). Located in the galactic halo within the Serpens Constellation, this cluster of stars is almost as old as the Universe itself (13 billion years)! Though very distant from Earth and hard to spot, it is a favorite amongst amateur astronomers who swear by its beauty.

Continue reading “Messier 5 (M5) – The NGC 5904 Globular Cluster”

Messier 4 (M4) – The NGC 6121 Globular Cluster

During the late 18th century, Charles Messier began to notice that a series of “nebulous” objects in the night sky that he originally mistook for comets. In time, he would notice that they were in fact something significantly different. With the hope of preventing other astronomers from making the same mistake, he began compiling a list of these in what would come to be known as the Messier Catalog.

Consisting of 100 objects, the catalog became an important milestone in both astronomy and the research of Deep Sky objects. Among the many famous objects in this catalog is the M4 loose globular cluster (aka. NGC 6121). Located in the Scorpius (Scorpio) Constellation, this great cluster of ancient stars is one of the closest Messier Objects of its kind to Earth.

Continue reading “Messier 4 (M4) – The NGC 6121 Globular Cluster”

The Andromeda Constellation

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. His treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come. Thanks to the development of modern telescopes and astronomy, this list was amended by the early 20th century to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.

Of these, Andromeda is one of the oldest and most widely recognized. Located north of the celestial equator, this constellation is part of the family of Perseus, Cassiopeia, and Cepheus. Like many constellation that have come down to us from classical antiquity, the Andromeda constellation has deep roots, which may go all the way back to ancient Babylonian astronomy.

Continue reading “The Andromeda Constellation”

Uranus’ “Sprightly” Moon Ariel

The outer Solar System has enough mysteries and potential discoveries to keep scientists busy for decades. Case in point, Uranus and it’s system of moons. Since the beginning of the Space Age, only one space probe has ever passed by this planet and its system of moons. And yet, that which has been gleaned from this one mission, and over a century and a half of Earth- (and space-) based observation, has been enough to pique the interest of many generations of scientists.

For instance, just about all detailed knowledge of Uranus’ 27 known moons – including the “sprightly” moon Ariel – has been derived from information obtained by the Voyager 2 probe. Nevertheless, this single flyby revealed that Ariel is composed of equal parts ice and rock, a cratered and geologically active surface, and a seasonal cycle that is both extreme and very unusual (at least by our standards!)

Discovery and Naming:

Ariel was discovered on October 24th, 1851, by English astronomer William Lassel, who also discovered the larger moon of Umbriel on the same day. While William Herschel, who discovered Uranus’ two largest moons of Oberon and Titania in 1787, claimed to have observed four other moons in Uranus’ orbit, those claims have since been concluded to be erroneous.

A montage of Uranus's moons. Image credit: NASA
A montage of Uranus’s major moons. Image credit: NASA

As with all of Uranus’ moons, Ariel was named after a character from Alexander Pope’s The Rape of the Lock and Shakespeare’s The Tempest. In this case, Ariel refers to a spirit of the air who initiates the great storm in The Tempest and a sylph who protects the female protagonist in The Rape of the Lock. The names of all four then-known satellites of Uranus were suggested by John Herschel in 1852 at the request of Lassell.

Size, Mass and Orbit:

With a mean radius of 578.9 ± 0.6 km and a mass of 1.353 ± 0.120 × 1021 kg, Ariel is equivalent in size to 0.0908 Earths and 0.000226 times as massive. Ariel’s orbit of Uranus is almost circular, with an average distance (semi-major axis) of 191,020 km – making it the second closest of Uranus’ five major moons (behind Miranda). It has a very small orbital eccentricity (0.0012) and is inclined very little relative to Uranus’ equator (0.260°).

With an average orbital velocity of 5.51 km/s, Ariel takes 2.52 days to complete a single orbit of Uranus. Like most moons in the outer Solar System, Ariel’s rotation is synchronous with its orbit. This means that the moon is tidally locked with Uranus, with one face constantly pointed towards the planet.

Ariel orbits and rotates within Uranus’ equatorial plane, which means it rotates perpendicular to the Sun. This means that its northern and southern hemispheres face either directly towards the Sun or away from it at the solstices, which results in an extreme seasonal cycle of permanent day or night for a period of 42 years.

Size comparison between Earth, the Moon, and Ariel. Credit: NASA/JPL/USGS/Tom Reding
Size comparison between Earth, the Moon, and Ariel. Credit: NASA/JPL/USGS/Tom Reding

Ariel’s orbit lies completely inside the Uranian magnetosphere, which means that its trailing hemisphere is regularly struck by magnetospheric plasma co-rotating with the planet. This bombardment is believed to be the cause of the darkening of the trailing hemispheres (see below), which has been observed for all Uranian moons (with the exception of Oberon).

Currently Ariel is not involved in any orbital resonance with other Uranian satellites. In the past, however, it may have been in a 5:3 resonance with Miranda, which could have been partially responsible for the heating of that moon, and 4:1 resonance with Titania, from which it later escaped.

Composition and Surface Features:

Ariel is the fourth largest of Uranus’ moons, but is believed to be the third most-massive. Its average density of 1.66 g/cm3 indicates that it is roughly composed of equal parts water ice and rock/carbonaceous material, including heavy organic compounds. Based on spectrographic analysis of the surface, the leading hemisphere of Ariel has been revealed to be richer in water ice than its trailing hemisphere.

The cause of this is currently unknown, but it may be related to bombardment by charged particles from Uranus’s magnetosphere, which is stronger on the trailing hemisphere. The interaction of energetic particles and water ice causes sublimation and the decomposition of methane trapped in the ice (as clathrate hydrate), darkening the methanogenic and other organic molecules and leaving behind a dark, carbon-rich residue (aka. tholins).

The highest-resolution Voyager 2 color image of Ariel. Canyons with floors covered by smooth plains are visible at lower right. The bright crater Laica is at lower left. Credit: NASA/JPL
The highest-resolution Voyager 2 color image of Ariel, showing canyons with floors covered by smooth plains (lower right) and the bright Laica crater (lower left). Credit: NASA/JPL

Based on its size, estimates of its ice/rock distribution, and the possibility of salt or ammonia in its interior, Ariel’s interior is thought to be differentiated between a rocky core and an icy mantle. If true, the radius of the core would account for 64% of the moon’s radius (372 km) and 52% of its mass. And while the presence of water ice and ammonia could mean Ariel harbors an interior ocean at it’s core-mantle boundary, the existence of such an ocean is considered unlikely.

Infrared spectroscopy has also identified concentrations of carbon dioxide (CO²) on Ariel’s surface, particularly on its trailing hemisphere. In fact, Ariel shows the highest concentrations of CO² on of any Uranian satellite, and was the first moon to have this compound discovered on its surface.

Though the precise reason for this is unknown, it is possible that it is produced from carbonates or organic material that have been exposed to Uranus’ magnetosphere or solar ultraviolet radiation – due to the asymmetry between the leading and trailing hemispheres. Another explanation is outgassing, where primordial CO² trapped in Ariel’s interior ice escaped thanks to past geological activity.

The observed surface of Ariel can be divided into three terrain types: cratered terrain, ridged terrain and plains. Other features include chasmata (canyons), fault scarps (cliffs), dorsa (ridges) and graben (troughs or trenches). Impact craters are the most common feature on Ariel, particularly in the south pole, which is the moon’s oldest and most geographically extensive region.

False-color map of Ariel. The prominent noncircular crater below and left of center is Yangoor. Part of it was erased during formation of ridged terrain via extensional tectonics. Credit: NASA/JPL/USGS
False-color map of Ariel, showing the prominent Yangoor crater (left of center) and patches of ridged terrain (far left). Credit: USGS

Compared to the other moons of Uranus, Ariel appears to be fairly evenly-cratered. The surface density of the craters, which is significantly lower than those of Oberon and Umbriel, suggest that they do not date to the early history of the Solar System. This means that Ariel must have been completely resurfaced at some point in its history, most likely in the past when the planet had a more eccentric orbit and was therefore more geologically active.

The largest crater observed on Ariel, Yangoor, is only 78 km across, and shows signs of subsequent deformation. All large craters on Ariel have flat floors and central peaks, and few are surrounded by bright ejecta deposits. Many craters are polygonal, indicating that their appearance was influenced by the crust’s preexisting structure. In the cratered plains there are a few large (about 100 km in diameter) light patches that may be degraded impact craters.

The cratered terrain is intersected by a network of scarps, canyons and narrow ridges, most of which occur in Ariel’s mid-southern latitudes. Known as chasmata, these canyons were probably graben that formed due to extensional faulting triggered by global tension stresses – which in turn are believed to have been caused by water and/or liquid ammonia freezing in the interior.

These chasmata are typically 15–50 km wide and are mainly oriented in an east- or northeasterly direction. The widest graben have grooves running along the crests of their convex floors (known as valles). The longest canyon is Kachina Chasma, which is over 620 km long.

was taken Jan. 24, 1986, from a distance of 130,000 km (80,000 mi). The complexity of Ariel's surface indicates that a variety of geologic processes have occurred. Credit: NASA/JPL
Image of Ariel, taken on Jan. 24, 1986, from a distance of 130,000 km (80,000 mi) showing the complexity of Ariel’s surface. Credit: NASA/JPL

The ridged terrain on Ariel, which is the second most-common type, consists of bands of ridges and troughs hundreds of kilometers long. These ridges are found bordering cratered terrain and cutting it into polygons. Within each band (25-70 km wide) individual ridges and troughs have been observed that are up to 200 km long and 10-35 km apart. Here too, these features are believed to be a modified form of graben or the result of geological stresses.

The youngest type of terrain observed on Ariel are its plains, which consists of relatively low-lying smooth areas. Due to the varying levels of cratering found in these areas, the plains are believed to have formed over a long period of time. They  are found on the floors of canyons and in a few irregular depressions in the middle of the cratered terrain.

The most likely origin for the plains is through cryovolcanism, since their geometry resembles that of shield volcanoes on Earth, and their topographic margins suggests the eruption of viscous liquid – possibly liquid ammonia. The canyons must therefore have formed at a time when endogenic resurfacing was still taking place on Ariel.

Uranus and Ariel
Ariel’s transit of Uranus, which was captured by the Hubble Space Telescope on July 26th, 2008. Credit: NASA, ESA, L. Sromovsky (University of Wisconsin, Madison), H. Hammel (Space Science Institute), and K. Rages (SETI)

Ariel is the most reflective of Uranus’s moons, with a Bond albedo of about 23%. The surface of Ariel is generally neutral in color, but there appears to be an asymmetry where the trailing hemisphere is slightly redder. The cause of this, is believed to be interaction between Ariel’s trailing hemisphere and radiation from Uranus’ magnetosphere and Solar ultraviolet radiation, which converts organic compounds in the ice into tholins.

Like all of Uranus’ major moons, Ariel is thought to have formed in the Uranunian accretion disc; which existed around Uranus for some time after its formation, or resulted from a large impact suffered by Uranus early in its history.

Exploration:

Due to its proximity to Uranus’ glare, Ariel is difficult to view by amateur astronomers. However, since the 19th century, Ariel has been observed many times by ground-based on space-based instruments. For example, on July 26th, 2006, the Hubble Space Telescope captured a rare transit made by Ariel of Uranus, which cast a shadow that could be seen on the Uranian cloud tops. Another transit, in 2008, was recorded by the European Southern Observatory.

It was not until the 1980s that images were obtained by the first and only orbiter to ever pass through the Uranus’ system. This was the Voyager 2 space probe, which photographed the moon during its January 1986 flyby.  The probe’s closest approach was at a distance of 127,000 km (79,000 mi) – significantly less than the distances to all other Uranian moons except Miranda.

Voyager 2. Credit: NASA
Artist’s impression of the Voyager 2 space probe. Credit: NASA

The images acquired covered only about 40% of the surface, but only 35% was captured with the quality required for geological mapping and crater counting. This was partly due to the fact that the flyby coincided with the southern summer solstice, where the southern hemisphere was pointed towards the Sun and the northern hemisphere was completely concealed by darkness.

No missions have taken place to study Uranus’ system of moons since and none are currently planned. However, the possibility of sending the Cassini spacecraft to Uranus was evaluated during its mission extension planning phase in April of 2008. It was determined that it would take about twenty years for Cassini to get to the Uranian system after departing Saturn. However, this proposal and the ultimate fate of the mission remain undecided at this time.

All in all, Uranus’ moon Ariel is in good company. Like it’s fellow Uranians, its axial tilt is almost the exact same as Uranus’, it is composed of almost equal parts ice and rock, it is geologically active, and its orbit leads to an extreme seasonal cycle. However, Ariel stands alone when its to its brightness and its youthful surface. Unfortunately, this bright and youthful appearance has not made it an easier to observe.

Alas, as with all Uranian moons, exploration of this moon is still in its infancy and there is much we do not know about it. One can only hope another deep-space mission, like a modified Cassini flyby, takes place in the coming years and finishes the job started by Voyager 2!

We have many interesting articles on Ariel and Uranus’ moons here at Universe Today. Here’s one about Ariel’s 2006 transit of Uranus, its 2008 transit, and one which answers the all-important question How Many Moons Does Uranus Have?

For more information, check out NASA’s Solar System Exploration page on Ariel, and The Planetary Society’s Voyager 2 Ariel image catalog.

Sources:

 

Saturn’s Moon Dione

Ringside With Dione

Thanks to the Cassini mission, a great deal has been learned about Saturn’s system of moons (aka. the Cronian system) in the past decade. Thanks to the presence of an orbiter in the system, astronomers and space exploration enthusiasts have been treated to a seemingly endless stream of images and data, which in turn has enabled us to learn many interesting things about these moons’ appearances, surface features, composition, and history of formation.

This is certainly true of Saturn’s bright moon of Dione. In addition to being the 15th largest moon in the Solar System, and more massive than all known moons smaller than itself combined, it has much in common with other Cronian satellites – like Tethys, Iapetus and Rhea. This includes being mainly composed of ice, having a synchronous rotation with Saturn, and an unusual coloration between its leading and trailing hemispheres.

Discovery and Naming:

Dione was first observed by Italian astronomer Giovanni Domenico Cassini on in 1684 using a large aerial telescope he set up on the grounds of the Paris Observatory. Along with the moons of Iapetus, Rhea and Tethys – which he had discovered in 1671, 1672 and 1684, respectively – he named these moons Sidera Lodoicea (“Stars of Louis”, after his patron, King Louis XIV of France).

These names, however, did not catch on outside of France. By the end of the 17th century, astronomers instead fell into the habit of naming Saturn’s then-known moons as Titan and Saturn I through V, in order of their observed distance from the planet. Being the second most-distant (behind Tethys) Dione came to be known as Saturn II for over a century.

An engraving of the Paris Observatory during Cassini's time. Credit: Public Domain
An engraving of the Paris Observatory during Cassini’s time. Credit: Public Domain

The modern names were suggested in 1847 by John Herschel (the son of famed astronomer William Herschel), who suggested all the moons of Saturn be named after Titans – the sons and daughters of Cronos in the Greek mythology (the equivalent of the Roman Saturn).

In his 1847 publication, Results of Astronomical Observations made at the Cape of Good Hope, he suggested the name Dione, an ancient oracular Titaness who was the wife of Zeus and the mother of Aphrodite. Dione is featured in Homer’s The Iliad, and geological features – such as craters and cliffs – take their names from people and places in Virgil’s Aeneid.

Size, Mass and Orbit:

With a mean radius of 561.4 ± 0.4 km and a mass of about 1.0954 × 1021 kg, Dione is equivalent in size to 0.088 Earths and 0.000328 times as massive. It orbits Saturn at an average distance (semi-major axis) of 377,396 km, with a minor eccentricity of 0.0022 – ranging from 376,566 km at periapsis and 378,226 km at apoapsis.

Dione’s semi-major axis is about 2% less than that of the Moon. However, reflecting Saturn’s greater mass, Dione’s orbital period is one tenth that of the Moon (2.736915 days compared to 28). Dione is currently in a 1:2 mean-motion orbital resonance with Saturn’s moon Enceladus, completing one orbit of Saturn for every two orbits completed by Enceladus.

Size comparison between Earth, the Moon, and Saturn's moon Dione. Credit: NASA/JPL/Space Science Institute
Size comparison between Earth, the Moon, and Saturn’s moon Dione. Credit: NASA/JPL/Space Science Institute

This resonance maintains Enceladus’s orbital eccentricity (0.0047) and provides tidal flexing that powers Enceladus’ extensive geological activity (which in turn powers its cryovolcanic jets). Dione has two co-orbital (aka. trojan) moons: Helene and Polydeuces. They are located within Dione’s Lagrangian points, 60 degrees ahead of and behind it, respectively.

Composition and Surface Features:

With a mean density of 1.478 ± 0.003 g/cm³, Dione is composed mainly of water, with a small remainder likely consisting of a silicate rock core. Though somewhat smaller and denser than Rhea, Dione is otherwise very similar in terms of its varied terrain, albedo features, and the different between its leading and trailing hemisphere.

Overall, scientists recognize five classes of geological features on Dione – Chasmata (chasms), dorsa (ridges), fossae (long, narrow depressions), craters, and catenae (crater chains). Craters are the most common feature, as with many Cronian moons, and can be distinguished in terms of heavily cratered terrain, moderately cratered plains, and lightly cratered plains.

The heavily cratered terrain has numerous craters greater than 100 km (62 mi) in diameter, whereas the plains areas tend to have craters less than 30 km (19 mi) in diameter (with some areas being more heavily cratered than others).

This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn's intense magnetic environment. Credit: NASA/JPL/Space Science Institute
Global map of Dione, showing dark red in the trailing hemisphere (left), which is due to radiation and charged particles from Saturn’s. Credit: NASA/JPL/Space Science Institute

Much of the heavily cratered terrain is located on the trailing hemisphere, with the less cratered plains areas present on the leading hemisphere. This is the opposite of what many scientists expected, and suggests that during the period of Heavy Bombardment, Dione was tidally locked to Saturn in the opposite orientation.

Because Dione is relatively small, it is theorized that an impact large enough to cause a 35 km crater would have been sufficient to spin the satellite in the opposite direction. Because there are many craters larger than 35 km (22 mi), Dione could have been repeatedly spun during its early history. The pattern of cratering since then and the leading hemisphere’s bright albedo suggests that Dione has remained in its current orientation for several billion years.

Dione is also known for its differently colored leading and trailing hemispheres, which are similar to Tethys and Rhea. Whereas its leading hemisphere is bright, its trailing hemisphere is darker and redder in appearance. This is due to the leading hemisphere picking up material from Saturn’s E-Ring, which is fed by Enceladus’ cryovolcanic emissions.

Meanwhile, the trailing hemisphere interacts with radiation from Saturn’s magnetosphere, which causes organic elements contained within its surface ice to become dark and redder in appearance.

Dione's trailing hemisphere, showing the patches of "whispy terrain". Credit: NASA/JPL
Dione’s trailing hemisphere, pictured by the Cassini orbiter, which shows its patches of “wispy terrain”. Credit: NASA/JPL

Another prominent feature is Dione’s “wispy terrain“, which covers its trailing hemisphere and is composed entirely of high albedo material that is also thin enough as to not obscure the surface features beneath. The origin of these features are unknown, but an earlier hypothesis suggested that that Dione was geologically active shortly after its formation, a process which has since ceased.

During this time of geological activity, endogenic resurfacing could have pushed material from the interior to the surface, with streaks forming from eruptions along cracks that fell back to the surface as snow or ash. Later, after the internal activity and resurfacing ceased, cratering continued primarily on the leading hemisphere and wiped out the streak patterns there.

This hypothesis was proven wrong by the Cassini probe flyby of December 13th, 2004, which produced close-up images. These revealed that the ‘wisps’ were, in fact, not ice deposits at all, but rather bright ice cliffs created by tectonic fractures (chasmata). During this flyby, Cassini also captured oblique images of the cliffs which showed that some of them are several hundred meters high.

Atmosphere:

Dione also has a very thin atmosphere of oxygen ions (O+²), which was first detected by the Cassini space probe in 2010. This atmosphere is so thin that scientists prefer to call it an exosphere rather than a tenuous atmosphere. The density of molecular oxygen ions determined from the Cassini plasma spectrometer data ranges from 0.01 to 0.09 per cm3 .

Crescent Dione from Cassini, October 11, 2005. The crater near the limb at top is Alcander, with larger crater Prytanis adjacent to its left. At lower right, several of the Palatine Chasmata fractures are visible, one of which can be seen bisecting the smaller craters Euryalus (right) and Nisus. NASA / Jet Propulsion Laboratory / Space Science Institute
Dione viewed by Cassini on October 11th, 2005, showing the Alcander crater (top) and the larger Prytanis crater to its left. Credit: NASA/JPL/SSI

Unfortunately, the prevalence of water molecules in the background (from Saturn’s E-Ring) obscured detection of water ice on the surface, so the source of oxygen remains unknown. However, photolysis is a possible cause (similar to what happens on Europa), where charged particles from Saturn’s radiation belt interact with water ice on the surface to create hydrogen and oxygen, the hydrogen being lost to space and the oxygen retained.

Exploration:

Dione was first imaged by the Voyager 1 and 2 space probes as they passed by Saturn on their way to the Outer Solar System in 1980 and 1981, respectively. Since that time, the only probe to conduct a flyby or close-up imaging of Dione has been the Cassini orbiter, which conducted five flybys of the moon between 2005 and 2015.

The first close flyby took place on October 11th, 2005, at a distance of 500 km (310 mi), followed by another on April 7th, 2010, (again at a distance of 500 km). A third flyby was performed on December 12th, 2011, and was the closest, at an distance of 99 km (62 mi). The fourth and fifth flybys took place on June 16th and August 17th, 2015, at a distance of 516 km (321 mi) and 474 km (295 mi), respectively.

In addition to obtaining images of Cassini’s cratered and differently-colored surface, the Cassini mission was also responsible for detecting the moon’s tenuous atmosphere (exosphere). Beyond that, Cassini also provided scientists with new evidence that Dione could be more geologically active than previously predicted.

Based on models constructed by NASA scientists, it is now believed that Dione’s core experiences tidal heating, which increases the closer it gets to Saturn. Because of this, scientists also believe that Dione may also have a liquid water ocean at its core-mantle boundary, thus joining moons like Enceladus, Europa and others in being potential environments where extra-terrestrial life could exist.

This, as well as Dione’s geological history and the nature of its surface (which could be what gives rise to its atmosphere) make Dione a suitable target for future research. Though no missions to study the moon are currently being planned, any mission to the Saturn system in the coming years would likely include a flyby or two!

We have many great articles on Dione and Saturn’s moons here at Universe Today. Here is one about Cassini’s first flyby, its closest flyby, it’s possible geological activity, its canyons, and its wispy terrain.

Universe Today also has an interview with Dr. Kevin Grazier, a member of the Cassini-Huygens mission.

Saturn’s “Yin-Yang” Moon Iapetus

Thanks to the Cassini mission, a great many things have been learned about the Saturn system in recent years. In addition to information on Saturn’s atmosphere, rotation and its beautiful and extensive ring system, many revelations have been made about Saturn’s system of moons. For example, very little was known about the obscure moon of Iapetus – sometimes nicknamed Saturn’s “yin-yang” moon – before Cassini‘s arrival.

In addition to its mysterious, equatorial ridge, this moon also has a two-tone appearance that has historically made direct observation quite difficult. Due to its distance from Saturn, close-up observation with space probes has also been quite difficult too until very recently. However, what we have learned in the past few years about Iapetus has taught us that it is a world of stark contrasts, and not just in terms of its appearance.

Discovery and Naming:

Iapetus was discovered by Giovanni Domenico Cassini in April 1671. Along with Rhea, Tethys and Dione, Iapetus was one of four moons Cassini discovered between 1671 and 1672 – which together he named Sidera Lodoicea (“Stars of Louis“, after his patron, Louis XIV). After the discovery, astronomers fell into the habit of referring to them using Roman numerals, with Iapetus being Saturn V.

The name Iapetus was suggested by John Herschel, the son of William Herschel, in his 1847 treatise Results of Astronomical Observations made at the Cape of Good Hope. Like all of Saturn’s moons, the name Iapetus was taken from the Titans of Greek mythology – the sons and daughters of Cronus (the Greek equivalent of the Roman Saturn). Iapetus was the son of Uranus and Gaia and the father of Atlas, Prometheus, Epimetheus and Menoetius.

An engraving of the Paris Observatory during Cassini's time. Credit: Public Domain
An engraving of the Paris Observatory during Cassini’s time. Credit: Wikipedia Commons

Geological features on Iapetus are named after characters and places from the French epic poem The Song of Roland. Examples of names used include the craters Charlemagne and Baligant, and the northern and southern bright regions, Roncevaux Terra and Sargassio Terra. The one exception is Cassini Regio the dark region of Iapetus, named after the region’s discoverer, Giovanni Cassini.

Size, Mass and Orbit:

With a mean radius of 734.5 ± 2.8 km and a mass of about 1.806 × 1021 kg, Iapetus is 0.1155 times the size of Earth and 0.00030 times as massive. It orbits its parent planet at an average distance (semi major axis) of 3,560,820 km. With a noticeable eccentricity of 0.0286125, its orbit ranges in distance from 3,458,936 km at periapsis and 3,662,704 km at apoapsis.

With an average orbital speed of 3.26 km/s, Iapetus takes 79.32 days to complete an single orbit of Saturn. Despite being Saturn’s third-largest moon, Iapetus orbits much farther from Saturn than its next closest major satellite (Titan). It has also the most inclined orbital plane of any of the regular satellites – 17.28° to the ecliptic, 15.47° to Saturn’s equator, and 8.13° to the Laplace plane. Only the irregular outer satellites like Phoebe have more inclined orbits.

Size comparison of Earth, the Moon, and Iapetus. Credit: NASA/JPL/Tom Reding
Size comparison of Earth, the Moon, and Iapetus. Credit: NASA/JPL-Caltech/SSI/LPI/Tom Reding

Composition and Surface Features:

Like many of Saturn’s moons – particularly Tethys, Mimas and Rhea – Iapetus has a low density (1.088 ± 0.013 g/cm³) which indicates that it is composed primary of water ice and only about 20% rock. But unlike most of Saturn’s larger moons, its overall shape is neither spherical or ellipsoid, instead consisting of flattened poles and a bulging waistline.

Its large and unusually high equatorial ridge (see below) also contributes to its disproportionate shape. Because of this, Iapetus is the largest known moon to not have achieved hydrostatic equilibrium. Though rounded in appearance, its bulging appearance disqualifies it from being classified as spherical.

As is common with Cronian moons, Iapetus’ surface shows considerable signs of cratering. Recent images taken by the Cassini spacecraft have revealed multiple large impact basins, with at least five measuring over 350 km in diameter. The largest, Turgis, has a diameter of 580 km, with an extremely steep rim and a scarp about 15 km in height. It has also been concluded that Iapetus’ surface supports long-runout landslides (aka. sturzstroms), which could be due to ice sliding.

As already noted, another interesting feature on Iapetus is its famous equatorial ridge, which measures 1300 km in length, 20 km wide, 13 km high, and runs along the center of the Cassini Regio dark region. Though indications had been made as to the existence of a mountain chain in this region earlier, the ridge was observed directly for the first time when the Cassini spacecraft took its first images of Iapetus on December 31st, 2004.

But perhaps Iapetus’ best known feature is its two-tone coloration. This was first observed by Giovanni Cassini in the 17th century, who noted that he could only view Iapetus when it was on the west side of Saturn and never on the east. At the time, he correctly concluded that Iapetus was tidally-locked with Saturn, and that one side was darker than the other. This conclusion was later backed up by observations using ground-based telescopes.

The dark region is named Cassini Regio, and the bright region is divided into Roncevaux Terra – which lies north of the equator – and Saragossa Terra, which is south of it. Today, it is understood that dark regions are carbonaceous, and likely contain organic compounds similar to the substances found in primitive meteorites or on the surfaces of comets – i.e. frozen cyano-compounds like hydrogen cyanide polymers.

The pattern of coloration is analogous to a spherical yin-yang symbol, hence the nickname “Saturn’s yin-yang moon.” The difference in coloration between the two Iapetian hemispheres is quite extreme. While the leading hemisphere is dark, with an albedo of 0.03–0.05 (and has a slight reddish-brown coloring), most of the trailing hemisphere and poles are almost as bright as Europa (albedo 0.5–0.6).

Enhanced-color map (27.6 MB). The leading hemisphere is at the right. NASA/JPL-Caltech/Space Science Institute/Lunar and Planetary Institute
Enhanced-color map of Iapetus, using data collected by the Cassini probe.  The leading hemisphere is at the right. Credit: NASA/JPL-Caltech/SSI/LPI

Thus, the apparent magnitude of the trailing hemisphere is around 10.2, whereas that of the leading hemisphere is around 11.9. Theories as to its cause generally agree that the original dark material must have come from outside Iapetus, but that subsequent darkening is caused by the sublimation of ice from the warmer areas of Iapetus’s surface, causing volatile compounds to sublimate out and retreat to colder regions.

Because of its slow rotation of 79 days, Iapetus experiences enough of a temperature difference to facilitate this. Near the equator, heat absorption by the dark material results in a daytime temperatures in Cassini Regio of 129 K (-144.15 °C/-227.5 °F)  compared to 113 K (-160.15 °C/-256.3 °F) in the bright regions. The difference in temperature means that ice sublimates from Cassini Regio, then deposits in the colder bright areas and especially at the even colder poles.

Over geologic time scales, this would further darken Cassini Regio and brighten the rest of Iapetus, creating a runaway thermal feedback process of ever greater contrast in albedo, ending with all exposed ice being lost from Cassini Regio. This model is the generally accepted one because it explains the distribution of light and dark areas, the absence of shades of grey, and the thinness of the dark material covering Cassini Regio.

Three different false-color views of Saturn's moon Iapetus show the boundary of the global "color dichotomy" on the hemisphere of this moon facing away from Saturn. Credit: NASA/JPL/Space Science Institute
Three different false-color views of Saturn’s moon Iapetus, showing the boundary of the global “color dichotomy”. Credit: NASA/JPL/Space Science Institute

However, it is acknowledged that a separate process would be required to get this process thermal feedback started. It is therefore theorized that initially, dark material came from elsewhere, most likely some of Saturn’s small, retrograde moons. Material from these moons could have been blasted off either by micrometeoroids or a large impact.

This material would then have been darkened from exposure to sunlight, then swept up by the leading hemisphere of Iapetus. Once this process created a modest contrast in albedo (and hence, temperature) on Iapetus’ surface, the thermal feedback process would have come into play and exaggerated it further.

The greatest source of this material is believed to be Phoebe, the largest of Saturn’s outer moons. The discovery of a tenuous disk of material in the plane of (and just inside of) Phoebe’s orbit, which was announced on October 6th, 2009, supports this theory.

Exploration:

The first robotic spacecraft to explore Iapetus were the Voyager 1 and Voyager 2 probes, which passed through the Saturn system on their way to the outer Solar System in 1980 and 1981. Data from these missions provided scientists with the first indications of Iapetus’ mountains, which were thereafter informally referred to as the “Voyager Mountains”.

Saturn's moon Iapetus. Image credit: NASA/JPL/Space Science Institute.
Saturn’s moon Iapetus, captured by the Cassini space probe on New Year’s Eve 2004. Credit: NASA/JPL/Space Science Institute.

Only the Cassini orbiter has ever explored Saturn’s moon of Iapetus, which captured multiple images of the moon from moderate distances since 2004. For instance, on New Year’s Eve 2004, Cassini passed Iapetus at a distance of 122,647 kilometers (76,209 miles) and captured the four visible light images that were put together to form the view of its equatorial ridge jutting out to the side (shown above).

However, its great distance from Saturn makes close observation difficult. As a result, Cassini made only one targeted close flyby, which took place on September 10th, 2007 at a minimum range of 1227 km. It was during this flyby that data was obtained which indicated that thermal segregation is likely the primary force responsible for Iapetus’ dark hemisphere. No future missions are planned at this time.

Iapetus is a world of contrasts, and not just in terms of its color. In addition, it is a very small moon that still managed to be massive enough to achieve hydrostatic equilibrium. And despite being one of Saturn’s larger moons, it orbits at a distance usually reserved for smaller, irregular moons.

Coupled with the fact that scientists are still not sure why it has its unusual walnut-shape, Iapetus is likely to be a target for any research missions headed to study the Cronian moons in the coming years.

We have many great articles on Iapetus and Saturn’s moons here at Universe Today. Here is one about its famous ridge, its two-tone coloring, the ice avalanches it periodically experiences, and whether or not it consumed one of Saturn’s rings.

For more information, check out NASA’s View of the Solar System page on Iapetus, and the Cassini Solstice Mission’s page.

Saturn’s “Death-Star” Moon Mimas

Much has been learned about Saturn’s system of moons in recent decades, thanks to the Voyager missions and the more recent surveys conducted by the Cassini spaceprobe. Between its estimated 150 moons and moonlets (only 53 of which have been identified and named) there is no shortage of scientific curiosities, and enough mysteries to keep astronomers here on Earth busy for decades.

Consider Mimas, which is often referred to as Saturn’s “Death Star Moon” on a count of its unusual appearance. Much like Saturn’s moons Tethys and Rhea, Mimas’ peculiar characteristics represents something of a mystery. Not only is it almost entirely composed ice, it’s coloration and surface features reveal a great deal about the history of the Saturnian (aka. Cronian) system. On top of that, it may even house an interior, liquid-water ocean.

Discovery and Naming:

Saturn’s moon Mimas was discovered by William Herschel in 1789, more than 100 years after Saturn’s larger moons were discovered by Christian Huygens and Giovanni Cassini. As with all the seven then-known satellites of Saturn, Mimas’ name was suggested by William Herschel’s son John in his 1847 publication Results of Astronomical Observations made at the Cape of Good Hope.

Mimas takes its name from one of the Titans of Greek mythology, who were the sons and daughters of Cronus (the Greek equivalent to Jupiter). Mimas was an offspring of Gaia, born from the blood of the castrated Uranus, who eventually died during the struggle with the Olympian Gods for control of the universe.

A replica of the telescope which William Herschel used to observe Uranus. Credit:
A replica of the telescope which William Herschel used to observe Uranus. Credit: Alun Salt/Wikimedia Commons

Size, Mass and Orbit:

With a mean radius of 198.2 ± 0.4 km and a mass of about 3.75 ×1019 kg, Mimas is equivalent in size to 0.0311 Earths and 0.0000063 times as massive. Orbiting Saturn at an average distance (semi-major axis) of 185,539 km, it is the innermost of Saturn’s larger moons, and the 8th moon orbiting Saturn. It’s orbit also has a minor eccentricity of 0.0196, ranging from 181,902 km at periapsis and 189,176 km at apoapsis.

With an estimated orbital velocity of 14.28 km/s, Mimas takes 0.942 days to complete a single orbit of Saturn. Like many of Saturn’s moons. Mimas rotation period is synchronous to its orbital period, which means it keeps one face constantly pointing towards the planet. Mimas is also in a 2:1 mean-motion resonance with the larger moon Tethys, and in a 2:3 resonance with the outer F Ring shepherd moonlet, Pandora.

Composition and Surface Features:

Mimas’ mean density of 1.1479 ± 0.007 g/cm³ is just slightly higher than that of water (1 g/cm³), which means that Mimas is mostly composed of water ice, with just a small amount of silicate rock. In this respect, Mimas is much like Tethys, Rhea, and Dione – moon’s of Saturn that are primarily composed of water ice.

Due to the tidal forces acting on it, Mimas is noticeably prolate – i.e. its longest axis is about 10% longer than the shortest, giving it its egg-shaped appearance. In fact, with a diameter of 396 km (246 mi), Mimas is just barely large and massive enough to achieve hydrostatic equilibrium (i.e. to become rounded in shape under the force of its own gravitation). Mimas is the smallest known astronomical body to have achieved this.

This mosaic, created from images taken by NASA's Cassini spacecraft during its closest flyby of Saturn's moon Mimas, looks straight at the moon's huge Herschel Crater Credit: NASA/JPL
Mosaic image of Mimas, created from images taken by NASA’s Cassini spacecraft, showing the Herschel crater in the center. Credit: NASA/JPL

Three types of geological features are officially recognized on Mimas: craters, chasmata (chasms) and catenae (crater chains). Of these, craters are the most common, and it is believed that many of them have existed since the beginning of the Solar System. Mimas surface is saturated with craters, with every part of the surface showing visible depressions, and newer impacts overwriting older ones.

Mimas’ most distinctive feature is the giant impact crater Herschel, named in honor of William Herschel (the discoverer of Uranus, its moons Oberon, and Titania, and the Cronian moons Enceladus and Mimas). This large crater gives Mimas the appearance of the “Death Star” from Star Wars. At 130 km (81 mi) in diameter, Herschel’s is almost a third of Mimas’ own diameter.

Its walls are approximately 5 km (3.1 mi) high, parts of its floor measure 10 km (6.2 mi) deep, and its central peak rises 6 km (3.7 mi) above the crater floor. If there were a crater of an equivalent scale on Earth, it would be over 4,000 km (2,500 mi) in diameter, which would make it wider than the continent of Australia.

The impact that made this crater must have nearly shattered Mimas, and is believed to have created the fractures on the opposite side of the moon by sending shock waves through Mimas’s body. In this respect, Mimas’ surface closely resembles that of Tethys, with its massive Odysseus crater on its western hemisphere and the concentric Ithaca chasma, which is believed to have formed as a result of the impact that created Odysseus.

Color map of Mimas, created using data provided by the Cassini spaceprobe. Credit: NASA/JPL-Caltech/Space Science Institute/Lunar and Planetary Institute
Color map of Mimas, created using data provided by the Cassini spaceprobe. Credit: NASA/JPL/Caltech/SSI/LPI

Mimas’ surface is also saturated with smaller impact craters, but no others are anywhere near the size of Herschel. The cratering is also not uniform, with most of the surface being covered with craters larger than 40 km (25 mi) in diameter. However, in the south polar region, there are generally no craters larger than 20 km (12 mi) in diameter.

Data obtained in 2014 from the Cassini spacecraft has also led to speculation about a possible interior ocean. Due to the planet’s libration (oscillation in its orbit), scientists believe that the planet’s interior is not uniform, which could be the result of a rocky interior or an interior ocean at the core-mantle boundary. This ocean would likely be maintained thanks to tidal flexing caused by Mimas’ orbital resonances with Tethys and Pandora.

A number of features in Saturn’s rings are also related to resonances with Mimas. Mimas is responsible for clearing the material from the Cassini Division, which is the gap between Saturn’s two widest rings – the A Ring and B Ring. The repeated pulls by Mimas on the Cassini Division particles, always in the same direction, forces them into new orbits outside the gap.

Particles in the Huygens Gap at the inner edge of the Cassini division are in a 2:1 resonance with Mimas. In other words, they orbit Saturn twice for each orbit competed by Mimas. The boundary between the C and B ring is meanwhile in a 3:1 resonance with Mimas; and recently, the G Ring was found to be in a 7:6 co-rotation eccentricity resonance with Mimas.

This figure illustrates the unexpected and bizarre pattern of daytime temperatures found on Saturn's small inner moon Mimas (396 kilometers, or 246 miles, in diameter). Credit: NASA/JPL/GSFC/SWRI/SSI
This figure illustrates the unexpected and bizarre pattern of daytime temperatures found on Saturn’s small inner moon Mimas. Credit: NASA/JPL/GSFC/SWRI/SSI

Exploration:

The first mission to study Mimas up close was Pioneer 11, which flew by Saturn in 1979 and made its closest approach on Sept. 1st, 1979, at a distance of 104,263 km. The Voyager 1 and 2 missions both flew by Mimas in 1980 and 1981, respectively, and snapped pictures of Saturn’s atmosphere, its rings, its system of moons. Images taken by Voyager 1 probe were the first ever of the Herschel crater.

Mimas has been imaged several times by the Cassini orbiter, which entered into orbit around Saturn in 2004. A close flyby occurred on February 13, 2010, when Cassini passed Mimas at a distance of 9,500 km (5,900 mi). In addition to providing multiple images of Mimas’ cratered surface, it also took measurements of Mimas’ orbit, which led to speculation about a possible interior ocean.

The Saturn system is truly a wonder. So many moons, so many mysteries, and so many chances to learn about the formation of the Solar System and how it came to be. One can only hope that future missions are able to probe some of the deeper ones, like what might be lurking beneath Mimas’ icy, imposing “Death Star” surface!

We’ve written many great articles about Mimas and Saturn’s moons here at Universe Today. Here’s one about the Herschel Crater, one about the first detailed look Cassini made, and one about it’s “Death Star” appearance.

Another great resource about Mimas is Solar Views, and you can get even more info from the Nine Planets.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

The Dwarf Planet Ceres

The Asteroid Belt is a pretty interesting place. In addition to containing between 2.8 and 3.2 quintillion metric tons of matter, the region is also home to many minor planets. The largest of these, known as Ceres, is not only the largest minor planet in the Inner Solar System, but also the only body in this region to be designated as a “dwarf planet” by the International Astronomical Union (IAU).

Due to its size and shape, when it was first observed, Ceres was thought to be a planet. While this belief has since been revised, Ceres is alone amongst objects in the Asteroid Belt in that it is the only object massive enough to have become spherical in shape. And like most of the dwarf planets in our Solar System, its status remains controversial, and our knowledge of it limited.

Discovery and Naming:

Ceres was discovered by Giuseppe Piazzi on January 1st, 1801, while searching for zodiacal stars. However, the existence of Ceres had been predicted decades before by Johann Elert Bode, a German astronomer who speculated that there had to be a planet between Mars and Jupiter. The basis for this assumption was the now defunct Bode-Titus law, which was first proposed by Johann Daniel Titius in 1766.

This law stated that there existed a regular pattern in the semi-major axes of the orbits of known planets, the only exception of which was the large gap between Mars and Jupiter. In an attempt to resolve this, in 1800, German astronomer Franz Xaver von Zach sent requests to twenty-four experienced astronomers (dubbed the “Celestial Police”) to combine their their efforts to located this missing planet.

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

One of these astronomers was Giuseppe Piazzi at the Academy of Palermo, who had made the discovery shortly before his invitation to join the group had arrived. At the time of his discovery, he mistook it for a comet, but subsequent observations led him to declare that it could be something more. He officially shared his observations with friends and colleagues by April of 1801, and sent the information to von Zach to be published in September.

Unfortunately, due to its change in its apparent position, Ceres was too close to the Sun’s glare to be visible to astronomers. It would not be until the end of the year that it would be spotted again, thanks in large part to German astronomer Carl Freidrich Gauss and the predictions he made of its orbit. On December 31st, von Zach and his colleague Heinrich W.M. Olbers found Ceres near the position predicted by Gauss, and thus recovered it.

Piazzi originally suggesting naming his discovery Cerere Ferdinandea, after the Roman goddess of agriculture Ceres (Cerere in Italian) and King Ferdinand of Sicily. The name Ferdinand was dropped in other nations, but Ceres was eventually retained. Ceres was also called Hera for a short time in Germany; whereas in Greece, it is still called Demeter after the Greek equivalent of the Roman goddess Ceres.

Classification:

The classification of Ceres has changed more than once since its discovery, and remains the subject of controversy. For example, Johann Elert Bode – a contemporary of Piazzi –  believed Ceres to be the “missing planet” he had proposed to exist between Mars and Jupiter. Ceres was assigned a planetary symbol, and remained listed as a planet in astronomy books and tables (along with 2 Pallas, 3 Juno, and 4 Vesta) until the mid-19th century.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Credit: NASA/ESA/Paul Schenck.

As other objects were discovered in the neighborhood of Ceres, it was realized that Ceres represented the first of a new class of objects. In 1802, with the discovery of 2 Pallas, William Herschel coined the term asteroid (“star-like”) for these bodies. As the first such body to be discovered, Ceres was given the designation 1 Ceres under the modern system of minor-planet designations.

By the 1860s, the existence of a fundamental difference between asteroids such as Ceres and the major planets was widely accepted, though a precise definition of “planet” was never formulated. The 2006 debate surrounding Eris, Pluto, and what constitutes a planet led to Ceres being considered for reclassification as a planet.

The definition that was adopted on August 24th, 2006 carried the requirements that a planet have sufficient mass to assume hydrostatic equilibrium, be in orbit around a star and not be a satellite, and have cleared the neighborhood around its orbit. As it is, Ceres does not dominate its orbit, but shares it with the thousands of other asteroids, and constitutes only about a third of the mass of the Asteroid Belt. Bodies like Ceres that met some of these qualification, but not all, were instead classified as “dwarf planets”.

In addition to the controversy surrounding the use of this term, there is also the question of whether or not Ceres status as a dwarf planet means that it can no longer be considered an asteroid. The 2006 IAU decision never addressed whether Ceres is an asteroid or not. In fact, the IAU has never defined the word ‘asteroid’ at all, having preferred the term ‘minor planet’ until 2006, and the terms ‘small Solar System body’ and ‘dwarf planet’ thereafter.

Size, Mass and Orbit:

Early observations of Ceres were only able to calculate its size to within an order of magnitude. In 1802, English astronomer William Herschel underestimated its diameter as 260 km, whereas in 1811 Johann Hieronymus Schröter overestimated it as 2,613 km. Current estimates place its mean radius at 473 km, and its mass at roughly 9.39 × 1020 kg (the equivalent of 0.00015 Earths or 0.0128 Moons).

Size comparison of Vesta, Eros and Ceres and Eros
Size comparison of Vesta, Eros and Ceres. Credit: NASA/JPL

With this mass, Ceres comprises approximately a third of the estimated total mass of the asteroid belt (which is in turn approximately 4% of the mass of the Moon). The next largest objects are Vesta, Pallas and Hygiea, which have mean diameters of more than 400 km and masses of 2.6 x 1020 kg, 2.11 x 1020 kg, and 8.6 ×1019 kg respectively. The mass of Ceres is large enough to give it a nearly spherical shape, which  makes it unique amongst objects and minor planets in the Asteroid Belt.

Ceres follows a slightly inclined and moderately eccentric orbit, ranging from 2.5577 AU (382.6 million km) from the Sun at perihelion and 2.9773 AU (445.4 million km) at aphelion. It has an orbital period of 1,680 Earth days (4.6 years) and takes 0.3781 Earth days (9 hours and 4 minutes) to complete a sidereal rotation.

Composition and Atmosphere:

Based on its size and density (2.16 g/cm³), Ceres is believed to be differentiated between a rocky core and an icy mantle. Based on evidence provided by the Keck telescope in 2002, the mantle is estimated to be 100 km-thick, and contains up to 200 million cubic km of water – which is more fresh water than exists on Earth. Infrared data on the surface also suggests that Ceres may have an ocean beneath its icy mantle.

If true, it is possible that this ocean could harbor microbial extraterrestrial life, similar to what has been proposed about Mars, Titan, Europa and Enceladus. It has further been hypothesized that ejecta from Ceres could have sent microbes to Earth in the past.

Other possible surface constituents include iron-rich clay minerals (cronstedtite) and carbonate minerals (dolomite and siderite), which are common minerals in carbonaceous chondrite meteorites. The surface of Ceres is relatively warm, with the maximum temperature estimated to reach approximately 235 K (-38 °C, -36 °F) when the Sun is overhead.

Assuming the presence of sufficient antifreeze (such as ammonia), the water ice would become unstable at this temperature. Therefore, it is possible that Ceres may have a tenuous atmosphere caused by outgassing from water ice on the surface. The detection of significant amounts of hydroxide ions near Ceres’ north pole, which is a product of water vapor dissociation by ultraviolet solar radiation, is another indication of this.

However, it was not until early 2014 that several localized mid-latitude sources of water vapor were detected on Ceres. Possible mechanisms for the vapor release include sublimation from exposed surface ice (as with comets), cryovolcanic eruptions resulting from internal heat, and subsurface pressurization. The limited amount of data suggests that the vaporization is more consistent with cometary-style sublimation.

Origin:

Multiple theories exist as to the origin of Ceres. On the one hand, it is widely believed that Ceres is a surviving protoplanet which formed 4.57 billion year ago in the Asteroid Belt. Unlike other inner Solar System protoplanets, Ceres neither merged with others to form a terrestrial planet and avoided being ejected from the Solar System by Jupiter. However, there is an alternate theory that proposes that Ceres formed in the Kuiper belt and later migrated to the asteroid belt.

The geological evolution of Ceres is dependent on the heat sources that were available during and after its formation, which would have been provided by friction from planetesimal accretion and decay of various radionuclides. These are thought to have been sufficient to allow Ceres to differentiate into a rocky core and icy mantle soon after its formation. This icy surface would have gradually sublimated, leaving behind various hydrated minerals like clay minerals and carbonates.

Today, Ceres appears to be a geologically inactive body, with a surface sculpted only by impacts. The presence of significant amounts of water ice in its composition is what has led scientists to the possible conclusion that Ceres has or had a layer of liquid water in its interior.

Exploration:

Until recently, very few direct observations had been made of Ceres and little was known about its surface features. In 1995, the Hubble Space Telescope captured high-resolutions images that showed a dark spot in the surface that was thought to be a crater – and nicknamed “Piazzi” after its founder.

The near-infrared images taken by the Keck telescope in 2002 showed several bright and dark features moving with Ceres’s rotation. Two of the dark features had circular shapes and were presumed to be craters. One was identified as the “Piazzi” feature, while the other was observed to have a bright central region. In 2003 and 2004, visible-light images were taken by Hubble during a full rotation that showed 11 recognizable surface features, the natures of which are yet undetermined.

With the launch of the Dawn mission, with which NASA intends to conduct a nearly decade-long study of Ceres and Vesta, much more has been learned about this dwarf planet. For instance, after achieving orbit around the asteroid in March of 2015, Dawn revealed a large number of surface craters with low relief, indicating that they mark a relatively soft surface, most likely made of water ice.

Several bright spots have also been observed by Dawn, the brightest of which (“Spot 5”) is located in the middle of an 80 km (50 mi) crater called Occator. These bright features have an albedo of approximately 40% that are caused by a substance on the surface, possibly ice or salts, reflecting sunlight. A haze periodically appears above Spot 5, supporting the hypothesis that some sort of outgassing or sublimating ice formed the bright spots.

The Dawn spacecraft also noted the presence of a towering 6 kilometer-tall mountain (4 miles or 20,000 feet) in early August, 2015. This mountain, which is roughly pyramidal in shape and protrudes above otherwise smooth terrain, appears to be the only mountain of its kind on Ceres.

Like so many celestial bodies in our Solar System, Ceres is a mystery that scientists and astronomers are working to slowly unravel. In time, our exploration of this world will likely teach us much about the history and evolution of our Solar System, and may even lead to the discovery of life beyond Earth.

We have many interesting articles on Ceres here at Universe Today. For example, here are some articles on the many bright spots captured by the Dawn probe, and what they likely are.

And here are some articles on the Asteroid Belt and Why it Isn’t a Planet.

For more information, check out NASA’s Dawn – Ceres and Vesta and Dwarf Planets: Overview.