Voyager 2

Voyager 2 Mission


Voyager 2 is easily the most famous spacecraft sent from Earth to explore other planets. Launched on August 20, 1977, Voyager visited Jupiter and Saturn, and is the only spacecraft to have ever made a flyby of the outer planets Uranus and Neptune. It flew past Neptune in 1989, but it’s still functioning and communicating with Earth.

Voyager 2 and its twin spacecraft Voyager 1 were built at NASA’s Jet Propulsion Lab in Pasadena, California. The two spacecraft were built with identical components, but launched on slightly different trajectories. Voyager 2 took advantage of a rare alignment of the planets so that it could use a gravity assisting boost as it flew past each one. The increased velocity from Jupiter would help it reach Saturn, Saturn helped it get to Uranus and then to Neptune.

It made its closest approach to Jupiter on July 9, 1979, passing within 570,000 km of the planet’s cloud tops. It captured some of the first, highest resolution images of Jupiter’s moons, showing volcanism on Io, and cracks in the icy surface of Europa. Astronomers now suspect that Europa’s surface hides a vast ocean of water ice.

Voyager 2 then went on to visit Saturn on August 26, 1981, and then onto Uranus on January 24, 1986. This was the first time a spacecraft had ever encountered Uranus, and captured images of the planet close up. Voyager studied Uranus’ rings, and discovered several new moons orbiting the planet. Voyager 2 made its final planetary visit with Neptune on August 25, 1989. Here the spacecraft discovered the planet’s “Great Dark Spot”, and discovered more new moons.

Voyager 2 is now considered an interstellar mission. This means that it has enough velocity to escape the Solar System and travel to another star. Of course, at its current speed, it would take hundreds of thousands of years to reach even the closest star. Scientists think that the spacecraft will continue transmitting radio signals until at least 2025, almost 50 years after it was launched.

We have written many articles about Voyager 2 for Universe Today. Here’s an article about NASA’s diagnosed problems with Voyager 2, and here are some Voyager 2 pictures.

If you’d like more information on the Voyager 2 mission, here’s a link to Voyager’s Interstellar Mission Homepage, and here’s the homepage for NASA’s Voyager Mission Website.

We’ve recorded an episode of Astronomy Cast all about Interstellar Travel. Listen here, Episode 145: Interstellar Travel.

Source: NASA

Life-size Wooden Spacecraft Sculptures


If you think about it, spacecraft are kind of ethereal in that once they are launched into space, we don’t ever see them again. Australian artist Peter Hennessey has created life-size wooden sculptures of several different spacecraft, giving people the chance to see and touch these objects that are immediately recognizable but which we will never actually experience. Hennessey says he wanted to “reverse the virtualization of physical things” by creating life-size reproductions of the spacecraft such as the Voyager space probe, Apollo Lunar Rover, the Hubble Space Telescope, and more. From Hennessey’s website: “By ‘re-enacting’ space traveling, scientific and military objects in plywood, galvanized steel and canvas, the artist creates ‘stand-ins’ that allow the viewer to contemplate their physical, symbolic and historical resonances as well as the political processes that they represent.”

I just think they are really cool, and I’d love to see them – Hubble has to be huge! See below.

'My Hubble (the universe turned in on itself)' by artist Peter Hennessey.

“My Hubble (the universe turned in on itself) is now on display in Sydney Australia as part of “Biennale of sydney 2010.” This life size ‘re-enactment’ of the Hubble Space Telescope was constructed “with the aim of giving the viewer a physical experience of the object.” It is constructed from lasercut plywood and steel and simultaneously enacts the scale and detail
of the original. This is an interactive sculpture: visitors are encouraged to play with, modify and create their own mini universes on the ground, which are then reflected by the telescope into the heavens.

According to the Design Bloom website, when creating his work Hennessey looked at 7 different images of the Hubble, and rather than using 3D software to model individual parts as one might expect, he used adobe illustrator. Building the telescope took about 3 months – in which 6 weeks were dedicated to laser cutting individual parts and building them into sections and the rest of the time was dedicated to assembling it.

'My Lunar Rover' by artist Peter Hennessey.

With ‘My Moon Landing’ Hennessey’s wanted to explore the “physicality, presences and symbolic power of the inaccessible objects that derive from the space race.”

Hennessey has even built a wooden replica of mission control.

Check out all his unique sculptures on his website.

Hat tip to Rachel Hobson!


Nereid is the name given to the third largest of Neptune’s moons, and the second to have been discovered … by veteran outer solar system astronomer, Gerard P. Kuiper (guess who the Kuiper Belt is named after!), in 1949. Prior to Voyager 2’s arrival, it was the last moon of Neptune to be discovered.

In keeping with the nautical theme (Neptune, Roman god of the sea; Triton, Greek sea god, son of Poseidon), Nereid is named after the fifty sea nymphs, daughters of Nereus and Doris, in Greek mythology … the nautical theme continues with the names of the other 11 moons of Neptune, Naiad (one kind of nymph, Greek mythology; not a Nereid), Thalassa (daughter of Aether and Hemera, Greek mythology; also Greek for ‘sea’), Despina (nymph, daughter of Poseidon and Demeter (Greek); not a Nereid), Galatea (one of the Nereids), Larissa (Poseidon’s lover; Poseidon is the Greek Neptune), Proteus (also a sea god in Greek mythology; Proteus is the Neptune’s second largest moon), Halimede (one of the Nereids), Sao (also one of the Nereids), Laomedeia (guess … yep, another of the Nereids), Psamathe (ditto), and Neso (ditto, all over again).

Almost everything we know about Nereid comes from the images Voyager 2 took of it (83), between 20 April and 19 August, 1989; its closest approach was approximately 4.7 million km.

Nereid’s highly eccentric orbit (eccentricity 0.75, the highest of any solar system moon) takes it from 1.37 million km from Neptune to 9.66 million km (average 5.51 million km); unlike Triton, and like the other inner moons, Nereid’s orbit is prograde. This suggests that it may be a captured Kuiper Belt object, or that its orbit was substantially perturbed when Triton was captured.

For an irregular moon, Nereid is rather large (radius approx 170 km). Its spectrum and color (grey) are quite different from those of other outer solar system bodies (e.g. Chiron), which suggests that it may have formed around Neptune.

For more on Nereid, check out the Jet Propulsion Laboratory’s (JPL) profile of it!

Nereid is a bit of an orphan with regard to Universe Today stories, but there are some! Three new moons discovered for Neptune , and How Many Moons Does Neptune Have?.