Titan Looks Cool in Infrared

The Cassini spacecraft ended its mission on September 15th, 2017, when it crashed into Saturn’s atmosphere, thus preventing any possible contamination of the system’s moons. Nevertheless, the wealth of data the probe collected during the thirteen years it spent orbiting Saturn (of the gas giant, its rings, and its many moons) continues to be analyzed by scientists – with amazing results!

Case in point, the Cassini team recently released a series of colorful images that show what Titan looks like in infrared. The images were constructing using 13 years of data that was accumulated by the spacecraft’s Visual and Infrared Mapping Spectrometer (VIMS) instrument. These images represent some of the clearest, most seamless-looking global views of the icy moon’s surface produced so far.

Infrared images provide a unique opportunity when studying Titan, which is difficult to observe in the visible spectrum because of its dense and hazy atmosphere. This is primarily the result of small particles called aerosols in Titan’s upper atmosphere, which strongly scatter visible light. However, where the scattering and absorption of light is much weaker, this allows for infrared “windows” that make it possible to catch glimpses of Titan’s surface.

Comparison between how Titan appears in visible light (center), and in infrared. Credit: NASA/JPL-Caltech/Stéphane Le Mouélic, University of Nantes, Virginia Pasek, University of Arizona

It is because of this that the VIMS was so valuable, allowing scientists to provide clear images of Titan’s surface. This latest collection of images are especially unique because of the smoothness and clarity they offer. In previous infrared images captured by the Cassini spacecraft of Titan (see below), there were great variations in imaging resolution and lighting conditions, which resulted in obvious seams between different areas of the surface.

This is due to the fact that the VIMS obtained data over many different flybys with different observing geometries and atmospheric conditions. As a result, very prominent seams appear in mosaic images that are quite difficult to remove. But, through laborious and detailed analyses of the data, along with time consuming hand processing of the mosaics, Cassini’s imaging team was able to mostly remove the seams.

The process used to reduce the prominence of seams is known as the “band-ratio” technique. This process involves combining three color channels (red, green and blue), using a ratio between the brightness of Titan’s surface at two different wavelengths. The technique also emphasizes subtle spectral variations in the materials on Titan’s surface, as evidenced by the bright patches of brown, blue and purple (which may be evidence of different compositions).

The three mosaics shown here were composed with data from Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) taken during the three flybys of Titan. Credit: NASA/JPL/University of Arizona

In addition to offering the clearest and most-seamless glimpse of Titan yet, these unique images also highlight the moon’s complex geography and composition. They also showcase the power of the VIMS instrument, which has paved the way for future infrared instruments that could capture images of Titan at much higher resolution and reveal features that Cassini was not able to see.

In the coming years, NASA hopes to send additional missions to Titan to explore its surface and methane lakes for signs of biosignatures. An infrared instrument, which can see through Titan’s dense atmosphere, provide high-resolution images of the surface and help determine its composition, will prove very useful in this regard!

Further Reading: NASA

Surf’s Up on Titan! Cassini May Have Spotted Waves in Titan’s Seas

It’s no surprise that Titan’s north polar region is covered with vast lakes and seas of liquid methane — these have been imaged many times by Cassini during its ten years in orbit around Saturn. What is surprising though is just how incredibly smooth the surfaces of these lakes have been found to be.

One would think that such large expanses of surface liquid — some of Titan’s seas are as big the Great Lakes — would exhibit at least a little surface action on a world with an atmosphere as dense as Titan’s. But repeated radar imaging has shown their surfaces to be “as smooth as the paint on a car.” Over the past several years scientists have puzzled over this anomaly but now they may have truly seen the light — that is, reflected light from what could actually be waves on Titan!

Seasonal winds may be finally kicking up waves in Titan's lakes. (Illustration © Ron Miller.)
Seasonal winds may be finally kicking up waves in Titan’s lakes. (Illustration © Ron Miller.)

Using data acquired during flybys of Titan in 2012 and 2013, planetary scientist Jason Barnes from the University of Idaho and a team of researchers from several other institutions including JPL, Cornell, and MIT, have identified what might be waves in the surface of Punga Mare, one of Titan’s biggest lakes.

For a sense of scale, Lake Victoria, the largest lake in Africa, could fit lengthwise across Titan’s 380-km (236-mile) -wide Punga Mare.

Read more: Titan’s North Pole is Loaded with Lakes

Variations in specular highlights in four pixels observed in the surface of Punga Mare by Cassini’s VIMS (Visible and Infrared Mapping Spectrometer) have been interpreted by the team as being the result of waves — or, perhaps more accurately, ripples, seeing as that they are estimated to be a mere 2 centimeters in height.

Still, based on what’s been observed thus far on Titan, that’s downright choppy.

If the Cassini observations interpreted by Barnes et al. are indicative of waves in Punga Mare, they could also explain previous specular variations seen in other bodies of liquid, like the smaller Kivu Lacus (top image).

Map of Titan's northern "Land o' Lakes" made from Cassini radar imaging passes (NASA/JPL/USGS)
Map of Titan’s northern “Land o’ Lakes” made from Cassini high-resolution radar imaging (NASA/JPL/USGS)

“If correct this discovery represents the first sea-surface waves known outside of Earth.”

– Jason W. Barnes et al.

Then again, wave action isn’t the only possible answer. Similar varied specular highlights could also be caused by a wet surface — like a methane mud flat. Further observations will be needed to rule out other possibilities and obtain a more accurate “surf forecast” for Titan.

The findings were presented by Jason Barnes at the 45th Lunar and Planetary Science Conference in Houston on March 17, 2014. Read the team’s abstract here, and read more in this article by Alexandra Witze on Nature News.