ExoMars 2016 Orbiter and Lander Mated for March Launch

ExoMars Schiaparelli lander being mated with the Trace Gas Orbiter on 12 February 2016. Credit: ESA - B. Bethge
ExoMars Schiaparelli lander being mated with the Trace Gas Orbiter on 12 February 2016. Credit: ESA – B. Bethge

Earth’s lone mission to the Red Planet this year has now been assembled into launch configuration and all preparations are currently on target to support blastoff from Baikonur at the opening of the launch window on March 14, 2016.

The ambitious ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli lander, built and funded by the European Space Agency (ESA). Continue reading “ExoMars 2016 Orbiter and Lander Mated for March Launch”

India’s First Mars Mission Set to Blast off Seeking Methane Signature

India is gearing up for its first ever space undertaking to the Red Planet – dubbed the Mars Orbiter Mission, or MOM – which is the brainchild of the Indian Space Research Organization, or ISRO.

Among other objectives, MOM will conduct a highly valuable search for potential signatures of Martian methane – which could stem from either living or non living sources. The historic Mars bound probe also serves as a forerunner to bolder robotic exploration goals.

If all goes well India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA).

The 1,350 kilogram (2,980 pound) orbiter, also known as ‘Mangalyaan’, is slated to blast off as early as Oct. 28 atop India’s highly reliable Polar Satellite Launch Vehicle (PSLV) from a seaside launch pad in Srihanikota, India.

India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

MOM is outfitted with an array of five science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.

ISRO officials are also paying close attention to the local weather to ascertain if remnants from Tropical Cyclone Phaillin or another developing weather system in the South Pacific could impact liftoff plans.

The launch target date will be set following a readiness review on Friday, said ISRO Chairman K. Radhakrishnan according to Indian press reports.

India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO

‘Mangalyaan’ is undergoing final prelaunch test and integration at ISRO’s Satish Dhawan Space Centre SHAR, Srihairkota on the east coast of Andhra Pradesh state following shipment from ISRO’s Bangalore assembly facility on Oct. 3.

ISRO has already assembled the more powerful XL extended version of the four stage PSLV launcher at Srihairkota.

MOM’s launch window extends about three weeks until Nov. 19 – which roughly coincides with the opening of the launch window for NASA’s next mission to Mars, the MAVEN orbiter.

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1.  Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN  was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space.  Credit: Ken Kremer/kenkremer.com
The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1. Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space. Credit: Ken Kremer/kenkremer.com

MAVEN’s on time blastoff from Florida on Nov. 18, had been threatened by the chaos caused by the partial US government shutdown that finally ended this morning (Oct. 17), until the mission was granted an ‘emergency exemption’ due to the critical role it will play in relaying data from NASA’s ongoing pair of surface rovers – Curiosity and Opportunity.

NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

As India’s initial mission to Mars, ISRO says that the mission’s objectives are both technological and scientific to demonstrate the nation’s capability to design an interplanetary mission and carry out fundamental Red Planet research with a suite of indigenously built instruments.

MOM’s science complement comprises includes the tri color Mars Color Camera to image the planet and its two moon, Phobos and Diemos; the Lyman Alpha Photometer to measure the abundance of hydrogen and deuterium and understand the planets water loss process; a Thermal Imaging Spectrometer to map surface composition and mineralogy, the MENCA mass spectrometer to analyze atmospheric composition, and the Methane Sensor for Mars to measure traces of potential atmospheric methane down to the ppm level.

It will be of extremely great interest to compare any methane detection measurements from MOM to those ongoing from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s planned 2016 ExoMars Trace Gas Orbiter.

MOM’s design builds on spacecraft heritage from India’s Chandrayaan 1 lunar mission that investigated the Moon from 2008 to 2009.

The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,000 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars by late November, assuming an Oct. 28 liftoff.

Following a 300 day interplanetary cruise phase, the do or die orbital insertion engine will fire on September 14, 2014 and place MOM into an 377 km x 80,000 km elliptical orbit.

NASA’s MAVEN is also due to arrive in Mars orbit during September 2014.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and perhaps ten months or longer.

Ken Kremer

Final Construction Starts for Europe’s 2016 Methane Sniffing Mars Mission

Has life ever existed on Mars? Or anywhere beyond Earth?

Answering that question is one of the most profound scientific inquiries of our time.

Europe and Russia have teamed up for a bold venture named ExoMars that’s set to blast off in search of Martian life in about two and a half years.

Determining if life ever originated on the Red Planet is the primary goal of the audacious two pronged ExoMars missions set to launch in 2016 & 2018 in a partnership between the European and Russian space agencies, ESA and Roscosmos.

In a major milestone announced today (June 17) at the Paris Air Show, ESA signed the implementing contract with Thales Alenia Space, the industrial prime contractor, to start the final construction phase for the 2016 Mars mission.

“The award of this contract provides continuity to the work of the industrial team members of Thales Alenia Space on this complex mission, and will ensure that it remains on track for launch in January 2016,” noted Alvaro Giménez, ESA’s Director of Science and Robotic Exploration.

ExoMars 2016 Mission to the Red Planet.  It consists of two spacecraft -  the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land.  Credit: ESA
ExoMars 2016 Mission to the Red Planet. It consists of two spacecraft – the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land. Credit: ESA

The ambitious 2016 ExoMars mission comprises of both an orbiter and a lander- namely the methane sniffing Trace Gas Orbiter (TGO) and the piggybacked Entry, Descent and Landing Demonstrator Module (EDM).

ExoMars 2016 will be Europe’s first spacecraft dispatched to the Red Planet since the 2003 blast off of the phenomenally successful Mars Express mission – which just celebrated its 10th anniversary since launch.

Methane (CH4) gas is the simplest organic molecule and very low levels have reportedly been detected in the thin Martian atmosphere. But the data are not certain and its origin is not clear cut.

Methane could be a marker either for active living organisms today or it could originate from non life geologic processes. On Earth more than 90% of the methane originates from biological sources.

The ExoMars 2016 orbiter will investigate the source and precisely measure the quantity of the methane.

The 2016 lander will carry an international suite of science instruments and test European landing technologies for the 2nd ExoMars mission slated for 2018.

The 2016 ExoMars Trace Gas Orbiter will carry and deploy the Entry, Descent and Landing Demonstrator Module to the surface of Mars. Credit: ESA-AOES Medialab
The 2016 ExoMars Trace Gas Orbiter will carry and deploy the Entry, Descent and Landing Demonstrator Module to the surface of Mars. Credit: ESA-AOES Medialab

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface. It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project until hefty cuts to NASA’s budget by Washington DC politicians forced NASA to terminate the agencies involvement after several years of detailed work.

Elements of the ExoMars program 2016-2018.  Credit: ESA
Elements of the ExoMars program 2016-2018. Credit: ESA
Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of planetary launches scheduled for January 2016 and May 2018.

NASA does not have the funds to launch another Mars rover until 2020 at the earliest – and continuing budget cuts threaten even the 2020 launch date.

NASA will still have a small role in the ExoMars project by funding several science instruments.

The ExoMars missions along with NASA’s ongoing Curiosity and Opportunity Mars rovers will pave the way for Mars Sample Return missions in the 2020’s and eventual Humans voyages to the Red Planet in the 2030’s.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations

June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM