During a Solar Flare, Dark Voids Move Down Towards the Sun. Now We Know Why

Solar flares are complex phenomena. They involve plasma, electromagnetic radiation across all wavelengths, activity in the Sun’s atmosphere layers, and particles travelling at near light speed. Spacecraft like NASA’s Solar and Heliophysics Observatory (SOHO) and the Parker Solar Probe shed new light on the Sun’s solar flares.

But it was a Japanese-led mission called Yohkoh that spotted an unusual solar flare in 1999. This flare displayed a downward flowing motion toward the Sun along with the normal outward flow. What caused it?

A team of researchers think they’ve figured it out.

Continue reading “During a Solar Flare, Dark Voids Move Down Towards the Sun. Now We Know Why”

It Turns out, We Have a Very Well-Behaved Star

Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.
Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.

Should we thank our well-behaved Sun for our comfy home on Earth?

Some stars behave poorly. They’re unruly and emit powerful stellar flares that can devastate life on any planets within range of those flares. New research into stellar flares on other stars makes our Sun seem downright quiescent.

Continue reading “It Turns out, We Have a Very Well-Behaved Star”

Giant Stars and the Ultimate Fate of the Sun

Sizes of giant stars relative to our Sun. Going from the G-type to K-type to M-types, giant stars get progressively redder (cooler) and larger. Late M-type giants are more than 100 times the size of our Sun. Image Credit: Lowell Observatory.

Astronomers have a new tool to help them understand giant stars. It’s a detailed study of the precise temperatures and sizes of 191 giant stars. The authors of the work say that it’ll serve as a standard reference on giant stars for years to come.

It’ll also shed some light on what the Sun will go through late in its life.

Continue reading “Giant Stars and the Ultimate Fate of the Sun”

Astronomers Have Found the Star/Exoplanet Combo That’s the Best Twin to the Sun/Earth

An artist's illustration of TOI 700d, an Earth-size exoplanet that TESS found in its star's habitable zone. Image Credit: NASA

At times, it seems like there’s an indundation of announcements featuring discoveries of “Earth-like” planets. And while those announcements are exciting, and scientifically noteworthy, there’s always a little question picking away at them: exactly how Earth-like are they, really?

After all, Earth is defined by its relationship with the Sun.

Continue reading “Astronomers Have Found the Star/Exoplanet Combo That’s the Best Twin to the Sun/Earth”

Solar Orbiter is Already Starting to Observe the Sun

Artist's impression of ESA's Solar Orbiter spacecraft. Credit: ESA/ATG medialab

On February 10th, 2020, the ESA’s Solar Orbiter (SolO) launched and began making its way towards our Sun. This mission will spend the next seven years investigating the Sun’s uncharted polar regions to learn more about how the Sun works. This information is expected to reveal things that will help astronomers better predict changes in solar activity and “space weather”.

Last week (on Thursday, Feb. 13th), after a challenging post-launch period, the first solar measurements obtained by the SolO mission reached its international science teams back on Earth. This receipt of this data confirmed that the orbiter’s instrument boom deployed successfully shortly after launch and that its magnetometer (a crucial instrument for this mission) is in fine working order.

Continue reading “Solar Orbiter is Already Starting to Observe the Sun”

This is the Highest Resolution Image Ever Taken of the Surface of the Sun

Credit: NSF

The Sun’s activity, known as “space weather”, has a significant effect on Earth and the other planets of the Solar System. Periodic eruptions, also known as solar flares, release considerable amounts of electromagnetic radiation, which can interfere with everything from satellites and air travel to electrical grids. For this reason, astrophysicists are trying to get a better look at the Sun so they can predict its weather patterns.

This is the purpose behind the NSF’s 4-meter (13-ft) Daniel K. Inouye Solar Telescope (DKIST) – formerly known as the Advanced Technology Solar Telescope – which is located at the Haleakala Observatory on the island of Maui, Hawaii. Recently, this facility released its first images of the Sun’s surface, which reveal an unprecedented level of detail and offer a preview of what this telescope will reveal in the coming years.

Continue reading “This is the Highest Resolution Image Ever Taken of the Surface of the Sun”

Astronomers Discovered a New Kind of Explosion That the Sun Can Do

Credit: NASA/SDO/Abhishek Srivastava/IIT(BHU)?

In the course of conducting solar astronomy, scientists have noticed that periodically, the Sun’s tangled magnetic field lines will snap and then realign. This process is known as magnetic reconnection, where the magnetic topology of a body is rearranged and magnetic energy is converted into kinetic energy, thermal energy, and particle acceleration.

However, while observing the Sun, a team of Indian astronomers recently witnessed something unprecedented – a magnetic reconnection that was triggered by a nearby eruption. This observation has confirmed a decade-old theory about magnetic reconnections and external drivers, and could also lead to a revolution in our understanding of space weather and controlled fusion and plasma experiments.

Continue reading “Astronomers Discovered a New Kind of Explosion That the Sun Can Do”

In the far Future our Sun will Turn Into a Solid Crystalline White Dwarf. Here’s How it’ll Happen

Artist's impression of the crystallization in the interior of a white dwarf star. Credit: University of Warwick/Mark Garlick

About fifty years ago, astronomers predicted what the ultimate fate of our Sun will be. According to the theory, the Sun will exhaust its hydrogen fuel billions of years from now and expand to become a Red Giant, followed by it shedding it’s outer layers and becoming a white dwarf. After a few more billion years of cooling, the interior will crystallize and become solid.

Until recently, astronomers had little evidence to back up this theory. But thanks to the ESA’s Gaia Observatory, astronomers are now able to observe hundreds of thousands of white dwarf stars with immense precision – gauging their distance, brightness and color. This in turn has allowed them to study what the future holds for our Sun when it is no longer the warm, yellow star that we know and love today.

Continue reading “In the far Future our Sun will Turn Into a Solid Crystalline White Dwarf. Here’s How it’ll Happen”

Astronomers Find One of the Sun’s Sibling Stars. Born From the Same Solar Nebula Billions of Years Ago

Image of the Sun. Credit: SDO/NASA

According to current cosmological theories, the Milky Way started to form approximately 13.5 billion years ago, just a few hundred million years after the Big Bang. This began with globular clusters, which were made up of some of the oldest stars in the Universe, coming together to form a larger galaxy. Over time, the Milky Way cannibalized several smaller galaxies within its cosmic neighborhood, growing into the spiral galaxy we know today.

Many new stars formed as mergers added more clouds of dust and gas and caused them to undergo gravitational collapse. In fact, it is believed that our Sun was part of a cluster that formed 4.6 billion years ago and that its siblings have since been distributed across the galaxy. Luckily, an international team of astronomers recently used a novel method to locate one of the Sun’s long-lost “solar siblings“, which just happens to be an identical twin!

Continue reading “Astronomers Find One of the Sun’s Sibling Stars. Born From the Same Solar Nebula Billions of Years Ago”

Here are the First Pictures From the Parker Solar Probe. Wait… That’s Not the Sun

The first images from NASA's Parker Solar Probe. Credit: NASA/Naval Research Laboratory/Parker Solar Probe

On August 12th, 2018, NASA launched the first spacecraft that will ever “touch” the face of the Sun. This was none other than the Parker Solar Probe, a mission that will revolutionize our understanding of the Sun, solar wind, and “space weather” events like solar flares. Whereas previous missions have observed the Sun, the Parker Solar Probe will provide the closest observations in history by entering the Sun’s atmosphere (aka. the corona).

And now, just over a month into the its mission, the Parker Solar Probe has captured and returned its first-light data. This data, which consisted of images of the Milky Way and Jupiter, was collected by the probe’s four instrument suites. While the images were not aimed at the Sun, the probe’s primary focus of study, they successfully demonstrated that the Parker probe’s instruments are in good working order.

Continue reading “Here are the First Pictures From the Parker Solar Probe. Wait… That’s Not the Sun”