New Technique Finds Water in Exoplanet Atmospheres

As more and more exoplanets are identified and confirmed by various observational methods, the still-elusive “holy grail” is the discovery of a truly Earthlike world… one of the hallmarks of which is the presence of liquid water. And while it’s true that water has been identified in the thick atmospheres of “hot Jupiter” exoplanets before, a new technique has now been used to spot its spectral signature in yet another giant world outside our solar system — potentially paving the way for even more such discoveries.

Researchers from Caltech, Penn State University, the Naval Research Laboratory, the University of Arizona, and the Harvard-Smithsonian Center for Astrophysics have teamed up in an NSF-funded project to develop a new way to identify the presence of water in exoplanet atmospheres.

Previous methods relied on specific instances such as when the exoplanets — at this point all “hot Jupiters,” gaseous planets that orbit closely to their host stars — were in the process of transiting their stars as viewed from Earth.

This, unfortunately, is not the case for many extrasolar planets… especially ones that were not (or will not be) discovered by the transiting method used by observatories like Kepler.

Watch: Kepler’s Universe: More Planets in Our Galaxy Than Stars

So the researchers turned to another method of detecting exoplanets: radial velocity, or RV. This technique uses visible light to watch the motion of a star for the ever-so-slight wobble created by the gravitational “tug” of an orbiting planet. Doppler shifts in the star’s light indicate motion one way or another, similar to how the Doppler effect raises and lowers the pitch of a car’s horn as it passes by.

The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)
The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)

But instead of using visible wavelengths, the team dove into the infrared spectrum and, using the Near Infrared Echelle Spectrograph (NIRSPEC) at the W. M. Keck Observatory in Hawaii, determined the orbit of the relatively nearby hot Jupiter tau Boötis b… and in the process used its spectroscopy to identify water molecules in its sky.

“The information we get from the spectrograph is like listening to an orchestra performance; you hear all of the music together, but if you listen carefully, you can pick out a trumpet or a violin or a cello, and you know that those instruments are present,” said Alexandra Lockwood, graduate student at Caltech and first author of the study. “With the telescope, you see all of the light together, but the spectrograph allows you to pick out different pieces; like this wavelength of light means that there is sodium, or this one means that there’s water.”

Previous observations of tau Boötis b with the VLT in Chile had identified carbon monoxide as well as cooler high-altitude temperatures in its atmosphere.

Now, with this proven IR RV technique, the atmospheres of exoplanets that don’t happen to cross in front of their stars from our point of view can also be scrutinized for the presence of water, as well as other interesting compounds.

“We now are applying our effective new infrared technique to several other non-transiting planets orbiting stars near the Sun,” said Chad Bender, a research associate in the Penn State Department of Astronomy and Astrophysics and a co-author of the paper. “These planets are much closer to us than the nearest transiting planets, but largely have been ignored by astronomers because directly measuring their atmospheres with previously existing techniques was difficult or impossible.”

Once the next generation of high-powered telescopes are up and running — like the James Webb Space Telescope, slated to launch in 2018 — even smaller and more distant exoplanets can be observed with the IR method… perhaps helping to make the groundbreaking discovery of a planet like ours.

“While the current state of the technique cannot detect earthlike planets around stars like the Sun, with Keck it should soon be possible to study the atmospheres of the so-called ‘super-Earth’ planets being discovered around nearby low-mass stars, many of which do not transit,” said Caltech professor of cosmochemistry and planetary sciences Geoffrey Blake. “Future telescopes such as the James Webb Space Telescope and the Thirty Meter Telescope (TMT) will enable us to examine much cooler planets that are more distant from their host stars and where liquid water is more likely to exist.”

The findings are described in a paper published in the February 24, 2014 online version of The Astrophysical Journal Letters.

Read more in this Caltech news article by Jessica Stoller-Conrad.

Sources: Caltech and EurekAlert press releases.

How to Measure a Hot Jupiter

An international team of astronomers has figured out a way to determine details of an exoplanet’s atmosphere from 50 light-years away… even though the planet doesn’t transit the face of its star as seen from Earth.

Tau Boötis b is a “hot Jupiter” type of exoplanet, 6 times more massive than Jupiter. It was the first planet to be identified orbiting its parent star, Tau Boötis, located 50 light-years away. It’s also one of the first exoplanets we’ve known about, discovered in 1996 via the radial velocity method — that is, Tau Boötis b exerts a slight tug on its star, shifting its position enough to be detectable from Earth. But the exoplanet doesn’t pass in front of its star like some others do, which until now made measurements of its atmosphere impossible.

Today, an international team of scientists working with the Very Large Telescope (VLT) at ESO’s Paranal Observatory in Chile have announced the success of a “clever new trick” of examining such non-transiting exoplanet atmospheres. By gathering high-quality infrared observations of the Tau Boötis system with the VLT’s CRIRES instrument the researchers were able to differentiate the radiation coming from the planet versus that emitted by its star, allowing the velocity and mass of Tau Boötis b to be determined.

“Thanks to the high quality observations provided by the VLT and CRIRES we were able to study the spectrum of the system in much more detail than has been possible before,” said Ignas Snellen with Leiden Observatory in the Netherlands, co-author of the research paper. “Only about 0.01% of the light we see comes from the planet, and the rest from the star, so this was not easy.”

Using this technique, the researchers determined that Tau Boötis b’s thick atmosphere contains carbon monoxide and, curiously, exhibits cooler temperatures at higher altitudes — the opposite of what’s been found on other hot Jupiter exoplanets.

“Maybe one day we may even find evidence for biological activity on Earth-like planets in this way.”

– Ignas Snellen, Leiden Observatory, the Netherlands

In addition to atmospheric details, the team was also able to use the new method to determine Tau Boötis b’s mass and orbital angle — 44 degrees, another detail not previously identifiable.

“The new technique also means that we can now study the atmospheres of exoplanets that don’t transit their stars, as well as measuring their masses accurately, which was impossible before,” said Snellen. “This is a big step forward.

“Maybe one day we may even find evidence for biological activity on Earth-like planets in this way.”

This research was presented in a paper “The signature of orbital motion from the dayside of the planet Tau Boötis b”, to appear in the journal Nature on June 28, 2012.

Read more on the ESO release here.

Added 6/27: The team’s paper can be found on arXiv here.

Top image: artist’s impression of the exoplanet Tau Boötis b. (ESO/L. Calçada). Side image: ESO’s VLT telescopes at the Paranal Observatory in Chile’s Atacama desert. (Iztok Boncina/ESO)