Astronomers Map Out the Raw Material for New Star Formation in the Milky Way

A team of researchers has discovered a complex network of filamentary structures in the Milky Way. The structures are made of atomic hydrogen gas. And we all know that stars are made mostly of hydrogen gas.

Not only is all that hydrogen potential future star-stuff, the team found that its filamentary structure is also a historical imprint of some of the goings-on in the Milky Way.

Continue reading “Astronomers Map Out the Raw Material for New Star Formation in the Milky Way”

Supercomputer Simulation Shows a Supernova 300 Days After it Explodes

The answers to many questions in astronomy are hidden behind the veil of deep time. One of those questions is around the role that supernovae played in the early Universe. It was the job of early supernovae to forge the heavier elements that were not forged in the Big Bang. How did that process play out? How did those early stellar explosions play out?

A trio of researchers turned to a supercomputer simulation to find some answers.

Continue reading “Supercomputer Simulation Shows a Supernova 300 Days After it Explodes”

A Star had a Partial Supernova and Kicked Itself Into a High-Speed Journey Across the Milky Way

Supernovae are some of the most powerful events in the Universe. They’re extremely energetic, luminous explosions that can light up the sky. Astrophysicists have a pretty good idea how they work, and they’ve organized supernovae into two broad categories: they’re the end state for massive stars that explode near the end of their lives, or they’re white dwarfs that draw gas from a companion which triggers runaway fusion.

Now there might be a third type.

Continue reading “A Star had a Partial Supernova and Kicked Itself Into a High-Speed Journey Across the Milky Way”

Detecting the Neutrinos From a Supernova That’s About to Explode

Neutrinos are puzzling things. They’re tiny particles, almost massless, with no electrical charge. They’re notoriously difficult to detect, too, and scientists have gone to great lengths to detect them. The IceCube Neutrino Observatory, for instance, tries to detect neutrinos with strings of detectors buried down to a depth of 2450 meters (8000 ft.) in the dark Antarctic ice.

How’s that for commitment.

Continue reading “Detecting the Neutrinos From a Supernova That’s About to Explode”

Astronomers Might Have Seen a Star Just Disappear. Turning Straight to a Black Hole Without a Supernova

Large stars have violent deaths. As they run out of hydrogen to fuse, the star’s weight squeezes its core to make it increasingly hot and dense. The star fuses heavier elements in a last-ditch effort to keep from collapsing. Carbon to Silicon to Iron, each step generating heat and pressure. But soon it’s not enough. The fusion even heavier elements don’t give the star more energy, and the core quickly collapses. The protons and neutrons of nuclei collide so violently that the resulting shock wave rips the star about. The outer layers of the star are thrown outward, becoming a brilliant supernova. For a brief time, the star shines brighter than its entire galaxy, and its core collapses into a neutron star or black hole. It was thought that all large stars end with a supernova, but new research finds that might not be the case.

Continue reading “Astronomers Might Have Seen a Star Just Disappear. Turning Straight to a Black Hole Without a Supernova”

Much of the Lithium Here on Earth Came from Exploding White Dwarf Stars

The Big Bang produced the Universe’s hydrogen, helium, and a little lithium. Since then, it’s been up to stars (for the most part) to forge the rest of the elements, including the matter that you and I are made of. Stars are the nuclear forges responsible for creating most of the elements. But when it comes to lithium, there’s some uncertainty.

A new study shows where much of the lithium in our Solar System and our galaxy comes from: a type of stellar explosion called classical novae.

Continue reading “Much of the Lithium Here on Earth Came from Exploding White Dwarf Stars”

A New Kind of Supernova Explosion has been Discovered: Fast Blue Optical Transients

For the child inside all of us space-enthusiasts, there might be nothing better than discovering a new type of explosion. (Except maybe bigger rockets.) And it looks like that’s what’s happened. Three objects discovered separately—one in 2016 and two in 2018—add up to a new type of supernova that astronomers are calling Fast Blue Optical Transients (FBOT).

Continue reading “A New Kind of Supernova Explosion has been Discovered: Fast Blue Optical Transients”

Take a Peek Inside a Giant Star Right Before it Dies

The biggest stars in our universe are some of the most fascinatingly complex objects to inhabit the cosmos. Indeed,giant stars have defied full explanation for decades. Especially when they’re near the end of their lives.

Stars power themselves through nuclear fusion, from the smashing together of lighter elements into heavier ones. This process leaves behind a little bit of extra energy. It’s not much, but when those fusion reactions occur at millions or billions of times every single second, it’s enough to keep a star powered for…millions or billions of years.

Continue reading “Take a Peek Inside a Giant Star Right Before it Dies”

NASA Chooses 4 New Astronomy Space Missions for Additional Study

Since 1958, the NASA Explorer Program has conducted low-cost missions that were deemed relevant to the goals of the Science Mission Directorate (SMD), particularly where the study of our Sun and the deeper cosmic mysteries are concerned. Recently, the Explorer Program selected four missions that they considered to be well-suited to these goals, two of which will be selected for launch in the coming years.

Consisting of two astrophysics Small Explorer (SMEX) and two Missions of Opportunity (MO) proposals, these missions are designed to study cosmic explosions and the debris they leave behind, as well as monitor how nearby stellar flares may affect the atmospheres of orbiting planets. After detailed evaluations, two of these missions will be selected next year and will take to space sometime in 2025.

Continue reading “NASA Chooses 4 New Astronomy Space Missions for Additional Study”

The Chemicals That Make Up Exploding Stars Could Help Explain Away Dark Energy

Astronomers have a dark energy problem. On the one hand, we’ve known for years that the universe is not just expanding, but accelerating. There seems to be a dark energy that drives cosmic expansion. On the other hand, when we measure cosmic expansion in different ways we get values that don’t quite agree. Some methods cluster around a higher value for dark energy, while other methods cluster around a lower one. On the gripping hand, something will need to give if we are to solve this mystery.

Continue reading “The Chemicals That Make Up Exploding Stars Could Help Explain Away Dark Energy”