Hubble Captures a Collision in a Black Hole’s “Death Star” Beam

Even the Empire’s planet-blasting battle station has nothing compared to the immense energy being fired from the heart of NGC 3862, a supermassive black hole-harboring elliptical galaxy located 300 million light-years away.

And while jets of high-energy plasma coming from active galactic nuclei have been imaged before, for the first time activity within a jet has been observed in optical wavelengths, revealing a quite “forceful” collision of ejected material at near light speeds.

Using archived image data acquired by Hubble in 1994, 1996, and 2002 combined with new high-resolution images acquired in 2014, Eileen Meyer at the Space Telescope Science Institute (STScI) in Baltimore, Maryland identified movement in visible clumps of plasma within the jet emitted from the nucleus of NGC 3862 (aka 3C 264). One of the outwardly-moving larger clumps could be seen gaining on a slower, smaller one in front of it and the two eventually collide, creating a shockwave that brightens the resulting merged mass dramatically.

Such a collision has never been witnessed before, and certainly not thousands of light-years out from the central supermassive black hole.

Close-up image of the jet as seen in 2014. Credit:  NASA, ESA, and E. Meyer (STScI).
Close-up image of the jet as seen in 2014. Credit: NASA, ESA, and E. Meyer (STScI).

“Something like this has never been seen before in an extragalactic jet,” Meyer said. “This will allow us a very rare opportunity to see how the kinetic energy of the collision is dissipated into radiation.”

Jets like this are created when infalling material around an active (that is, “feeding”) supermassive black hole gets caught up in its powerful spinning and twisting magnetic fields. This accelerates the material even further and, rather than permitting it to descend down past the black hole’s event horizon, results in it getting shot out into space at velocities close to the speed of light.

Read more: Black Hole Jets May Be Molded by Magnetism

When material approaches the black hole in even amounts the jets are fairly consistent. But if the inflow is uneven, the jets can consist of clumps or knots traveling outward at different speeds.

Because of the motion of the galaxy itself related to our own, the speed of the clumps can appear to actually move faster than the speed of light, especially when – as seen in NGC 3862 – a large clump has already paved the way within the jet. In reality the light speed limit has not been broken, but the apparent superluminal motion so far from the SMBH indicates that the material was ejected extremely energetically.

It’s expected that the combined clusters of material will continue to brighten over the next several decades.

You can see a video of the observations below, and watch a Google+ Hangout with Hubble team members about these observations here.

Source: Hubble news center

What Steps Are Needed To Find More Earths?

It wasn’t so long ago that we found out there is an Earth-sized planet in a habitable zone of a star. But how many others are out there, and do we know if planets like this are truly habitable?

“Looking towards the future, what we really want to do eventually is transform our knowledge from planets in the habitable zone to [characterizing] planetary environments,” said Natalie Batalha, a co-investigator on NASA’s Kepler Space Telescope, in a webcast presentation today (April 28) .

This means that astronomers will be able to, from a distance, look at “biosignatures” of life in the atmosphere. What a biosignature would be is still being characterized, but it could be something like an unusually high proportion of oxygen — as long as abiotic processes are not accounted for, of course.

Batalha identified these parameters for finding other Earths in a presentation at the “Habitable Worlds Across Time and Space” conference presented by the Space Telescope Science Institute:

Detections of planets: other telescopes (left) vs. Kepler. Credit: Natalie  Batalha / NASA (screenshot)
Detections of planets in the habitable zone: other telescopes (left) vs. the Kepler space telescope. Credit: Natalie Batalha / NASA (screenshot)

– The telescope must be sensitive to an Earth-sized planet in the habitable zone of a G, K or M-type star (which are stars that are like the sun);

– A uniform and reliable detection catalog with well-understood sizes, orbital periods and insolation fluxes (energy received from the sun);

– Knowledge of Kepler’s detection efficiency and the planetary catalog’s reliability;

– Well-documented and accessible data products for other community members to analyze.

What would also be helpful to planetary scientists is learning more about how a planet forms in the habitable region of its star.

Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA
Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA

In a presentation at the same conference, the University of Toronto’s Diana Valencia (an astrophysicist) pointed out there is no single predictor for how large a planet will get. It depends on how close a planetesimal disc is to its star, the rate of accretion in the area and dust opacity, among other factors.

She also gave a brief overview of processes that demonstrate how hard it is to predict habitability. Earth had at least two atmospheres in its past, presentation slides said, with the first atmosphere lost and the second built from volcanism and impacts. Valencia also pointed to complexities involving the Earth’s mantle and plate tectonics.

The University of Puerto Rico keeps a list of potentially habitable planets on its website, which as of this writing stands at 21.

The conference runs through May 1, and you can see the agenda here.