Watch SETI-Seeking Radio Dishes Dance Across the Universe

Radio dishes always evoke wonder, as these giants search for invisible (to our eyes, anyway) radio signals from objects like distant quasars, pulsars, masers and more, including potential signals from extraterrestrials. This new timelapse from Harun Mehmedinovic and Gavin Heffernan of Sunchaser Pictures was shot at several different radio astronomy facilities — the Very Large Array (VLA) Observatory in New Mexico, Owens Valley Observatory in Owens Valley California, and Green Bank Observatory in West Virginia. All three of these facilities have been or are still being partly used by the SETI (Search for the Extraterrestrial Intelligence) program.

Watch the dishes dance in their search across the Universe!

The huge meteorite streaking across the sky above Very Large Array (2:40) is from the Aquarids meteor shower. The large radio telescope at Green Bank is where scientists first attempted to “listen” to presence of extraterrestrials in the galaxy. The Very Large Array was featured in the movie CONTACT (1997) while Owens Observatory was featured in THE ARRIVAL (1996).

This video was created for SkyGlowProject.com, a crowdfunded educational project that explores the effects and dangers of urban light pollution in contrast with some of the most incredible Dark Sky Preserves in North America.

The music is by Tom Boddy, and titled “Thoughtful Reflections.”

Thanks to Gavin Heffernan for sharing this video.

Screenshot from the DishDance timelapse. Credit and copyright: Harun Mehmedinovic and Gavin Heffernan.
Screenshot from the DishDance timelapse. Credit and copyright: Harun Mehmedinovic and Gavin Heffernan.

SKYGLOW: DISHDANCE from Sunchaser Pictures on Vimeo.

See a Glowing ‘Honey Moon’ and Unique Star Trails in New Night Sky Timelapse

The “stars” of a new 3-minute timelapse are some very unique star trails and a glowing fireball that is actually a giant ‘honey moon‘ — the full Moon in June. Gavin Heffernan from Sunchaser Pictures and Harun Mehmedinovic from Bloodhoney.com teamed up for this video, filming in gorgeous mountain locations in the Southwestern US, showcasing gathering storm clouds and stunning night sky scenes.

At about 1:50 in the video, you’ll see a unique “split” star trail effect, where it looks like the trails are cascading down the sides of a mountain. At 2:02, the Moon appears to burn through the sky like a meteor.

See imagery from the footage below:

This video is part of the Skyglow Project, which is an initiative to protect the night skies and raise awareness of the light pollution and its dangers. It was produced in association with BBC Earth.

Interestingly, Heffernan said some of the footage seen here was also featured this summer by The Rolling Stones in their Zip Code Stadium Tour, after Mick Jagger saw some of their previous timelapse videos.

The footage was shot in Monument Valley, Arizona, Trona Pinnacles, California, and Red Rock Canyon, California.

Thanks to Gavin Heffernan for continuing to share his wonderful work!

A star trail sequence from the timelapse video "Pinnacles". Image credit: Harun Mehmedinovic. Used by permission.
A star trail sequence from the timelapse video “Pinnacles.” Image credit: Harun Mehmedinovic. Used by permission.

PINNACLES – Southwest Timelapse Medley from Sunchaser Pictures on Vimeo.

Turning Stars Into Art

We all have cameras, and the sky’s an easy target, so why not have a little fun? Ever since I got my first camera at age 12 I wanted to shoot time exposures of the night sky. That and a tripod are all you need. Presented here for your enjoyment are a few oddball and yet oddly informative images of stars and planets.  Take the word “art” loosely! 

This is the pair to the Sirius image and shows Jupiter through the telescope. Notice how blandly white it appears. That's because Jupiter's disk is large enough to not  show twinkling (and color changes) caused by atmospheric turbulence as in the case of point-like Sirius.
Colorless mess. This is the companion to the Sirius image and shows Jupiter through the telescope. Notice how blandly white it appears. That’s because Jupiter’s disk is large enough to not show twinkling (and color changes) caused by atmospheric turbulence as in the case of point-like Sirius. Credit: Bob King
Orion's Belt and Sword trail in this time exposure made with a 200mm lens. The nearly perfectly parallel because the stars lie very near the celestial equator and were on the meridian at the time.
Pleasing parallels. Orion’s Belt and Sword trail in this time exposure made with a 200mm lens. The fuzzy pink streak is the Orion Nebula. They’re trails are nearly parallel because the stars all lie close to the celestial equator and were crossing the meridian at the time. Credit: Bob King
Star Trek Effect. OK, this was crazy to shoot. I centered Jupiter in the viewfinder, pressed the shutter button for a 20-second time exposure and slowly zoomed out from 70mm to 200mm on the telephoto lens. It took a few tries, because I was shooting blind, but even the rejects weren't too bad. Credit: Bob King
Star Trek Effect.  I centered Jupiter in the viewfinder, pressed the shutter button for a 20-second time exposure and slowly hand-zoomed the lens from 70mm to 200mm. It took a few tries because I was shooting blind, but even the rejects weren’t too bad. Credit: Bob King
Color by fog. The colors of stars are accentuated when photographed through fog or light cloud. Orion at right with the crescent moon at lower left. Credit: Bob King
Color by Fog. The colors of stars are accentuated when spread into a glowing disk by fog or light cloud. Orion  is at right with the crescent moon at lower left. Credit: Bob King
Snow flies.  During a time exposure taken on a snowy but partly cloudy night, snowflakes, illuminated by a yard light, streak about  beneath a Full Moon earlier this winter. Credit: Bob King
Snow flies. During a time exposure taken on a snowy but partly cloudy night, snowflakes, illuminated by a yard light, streak about beneath a Full Moon earlier this winter. Credit: Bob King
Stuttering Stars. For this image of the Big Dipper the camera was on a tracking mount. I left the shutter open for about a half hour, then covered the lens with a black cloth for a few minutes. After the cloth was removed, I started tracking and exposed the Dipper for a few minutes. During part of the exposure I used a diffusion filter in front of the lens to soften and enlarge the brightest stars. Credit: Bob King
Stuttering Stars. For this image of the Big Dipper the camera was on a tracking mount. I left the shutter open for about 25 minutes with the tracking turned off so the stars would trail.  Then the lens was covered with a black cloth for a few minutes to create a gap between this exposure and the next. After the cloth was removed, I started the tracking motor and kept the exposure running for a few minutes. A diffusion filter was used in front of the lens to soften and enlarge the brightest stars. Credit: Bob King

Lovely New Timelapse: Chasing Starlight in the Canadian Rockies

Ready for an adventure? One of our favorite photographers, Jack Fusco, created this stunning travel video for Travel Alberta and viewing it might be enough to make you start packing your bags.

“There’s a certain feeling that you get from standing under a truly dark sky for the first time,” Jack wrote. “Although it’s hard describe the exact feeling of awe that’s felt, it’s an experience that doesn’t leave you. In fact, it’s something that can change you. It can make you forget about sleeping when the sun has set and instead readies you for an adventure. This timelapse is about capturing the adventure of chasing star filled skies and the feeling you get from experiencing it. I hope it inspires people to find their own adventure chasing the stars.”

See some of his beautiful still images from his photo-shoot below:

Chasing Starlight was shot using a Nikon D800E & a Nikon D810 equipped with Nikon 14-24 f/2.8 lenses. See more of Jack’s wonderful work at his website, Instagram, or Jack Fusco Photography.

Aurora over Peyto Lake in Alberta, Canada. Credit and copyright: Jack Fusco.
Aurora over Peyto Lake in Alberta, Canada. Credit and copyright: Jack Fusco.

Stunning, Majestic New Timelapse from King’s Canyon and Sequoia National Parks

Shooting the night sky from an area filled with canyons and towering trees might sound like a challenge, but Gavin Heffernan and his crew at Sunchaser Pictures have “majestically” succeeded with this new timelapse from Kings Canyon and Sequoia National Parks in California. They spent three days and two nights around the summer solstice, covering the 1,353 square miles of the two parks. They captured gorgeous night sky views, star trails, bright meteor streaks, and satellite passes — all framed by the magnificent landscape of the area.

“It was undoubtedly one of the most beautiful places I’ve ever seen, with incredible canyons, mountains, and vistas out of a fantasy novel,” Gavin told UT via email. “Far removed from any light pollution, the skies were equally stunning, with some epic milky ways, star trails, and the brightest meteor picture I’ve ever captured.” Image above — and see the new timelapse video below, with the meteor trails coming at 1:41 & 2:26:

Gavin said most night shots were captured with 25 second exposures on two Canon EOS 6D’s with a variety of wide, fast lenses, including a 24mm f1/4 and 28mm f1/8. The stunning star trails effect is created by tracing rotations of the Earth’s axis, using long exposures.

Star trails at dawn just as the Sun rises above the mountains in Kings Canyon. Credit and copyright: Gavin Heffernan.
Star trails at dawn just as the Sun rises above the mountains in Kings Canyon. Credit and copyright: Gavin Heffernan.

Find out more about this video on Vimeo and you can watch a “behind the scenes” video of what it took to make this video — including an encounter with a brown bear! — here.

KINGS from Sunchaser Pictures on Vimeo.

Watch the Northern Lights Dance and Shimmer in “Silent Storms”

Aurorae were once believed to be warring clans of spirit soldiers, the skyward ghosts of virgin women, or the glow of fires burning inside celestial caves. Today we know they’re caused by ions in the atmosphere getting zapped by charged solar particles caught up in Earth’s magnetic field. But the knowledge of what creates aurorae doesn’t make their shimmering dance any less beautiful for those lucky enough to see them. I’ve personally never witnessed an aurora, but photographer Ole Salomonsen has — and he’s created yet another gorgeous time-lapse of the northern lights over his native Scandinavia to share their beauty with the world.

Continue reading “Watch the Northern Lights Dance and Shimmer in “Silent Storms””

Star Trail Photo Hints at Hidden Polestars

A week ago I made a 45-minute time exposure of the southern sky featuring the planet Mars. As the Earth rotated on its axis, the stars trailed across the sky. But take a closer look at the photo and you’ll see something interesting going on. 

The trails across the diagonal (upper right to lower left) are straight, those in the top third arc upward or north while those in the bottom third curve downward or south.

I've drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth's equator see the celestial equator pass directly overhead. From mid-northern latitudes, it's about halfway up in the southern sky. From mid-southern latitudes, it's halfway up in the northern sky. Credit: Bob King
I’ve drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth’s equator see the celestial equator pass directly overhead. From mid-northern latitudes, it’s about halfway up in the southern sky. From mid-southern latitudes, it’s halfway up in the northern sky. Credit: Bob King

I suspect you know what’s happening here. Mars happens to lie near the celestial equator, an extension of Earth’s equator into the sky. The celestial equator traces a great circle around the celestial sphere much as the equator completely encircles the Earth.

On Earth, cities north of the equator are located in the northern hemisphere, south of the equator in the southern hemisphere. The same is true of the stars. Depending on their location with respect to the celestial equator they belong either to the northern or southern halves of the sky.

Earth's axis points north to Polaris, the northern hemisphere's North Star, and south to dim Sigma Octantis. Illustration: Bob King
Earth’s axis points north to Polaris, the northern hemisphere’s North Star, and south to dim Sigma Octantis. Illustration: Bob King

Next, let’s take a look at Earth’s axis and where each end points. If you live in the northern hemisphere, you know that the axis points north to the North Star or Polaris. As the Earth spins, Polaris appears fixed in the north while all the stars in the northern half of the sky describe a circle around it every 24 hours (one Earth spin). The closer a star is to Polaris, the tighter the circle it describes.

Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King
Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King

Likewise, from the southern hemisphere, all the southern stars circle about the south pole star, an obscure star named Sigma in the constellation of Octans, a type of navigational instrument. Again, as with Polaris, the closer a star lies to Sigma Octantis, the smaller its circle.

Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz
Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz

But what about stars on or near the celestial equator? These gems are the maximum distance of 90 degrees from either pole star just as Earth’s equator is 90 degrees from the north and south poles. They “tread the line” between both hemispheres and make circles so wide they appear not as arcs – as the other stars do in the photo – but as straight lines. And that’s why stars appear to be heading in three separate directions in the photograph.

A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium
A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium

In so many ways, we see aspects of our own planet in the stars above.

Astrophoto: Star Trails Over Kitt Peak

Our pal Rob Sparks said he had always wanted to try creating a star trails picture and this is his first attempt. Very nice! Of course, he had a great view of the telescopes on Kitt Peak in Arizona as a stunning foreground, (the lights of Tucson are to the right) but had to deal with a “nearly full Moon that night which illuminated the observatory and limited the exposure times,” Rob said on Flickr. “However, I am reasonably happy for a first try.”

We’re happy, too, as this is a lovely image. Thanks for sharing Rob!

You can read more details about the image on Rob’s website, The Half-Astrophysicist.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Whimsical and Beautiful New Timelapse: Borrego Stardance

Just outside of Borrego Springs, California, monsters lurk. Life-size metal statues of dinosaurs, dragons, and wooly mammoths stand among giant insects, birds and several other creatures. But the 600,000 acre Anzo-Borrego State Park is also an astronomer’s dream, since it is one of four communities in the world to be classified a “Dark Sky Community” by the International Dark Sky Association.

Timelapse maven Gavin Heffernan from Sunchaser Pictures has now combined these monsters and the beautiful dark sky for his latest astronomical timelapse video, Borrego Stardance. It’s an unusual and fanciful look at the night sky –- where else can you see dragons and star trails at the same time? Watch below — and crank the volume for added effect!

“Despite the grueling 112 degree temperatures, my team and I had an amazing shoot, with some of the clearest Milky Way footage we’ve ever captured” Gavin wrote Universe Today via email, “as well as some exciting creature-filled star trails, and more experiments with “Starscaping” (switching from stars to trails mid-shot).”

It’s a beautiful addition to Gavin’s already impressive timelapse and video collection. You can see a behind-the-scenes video of the Borrego site here.

You can find more information on the statues at the Galleta Meadows website.

BORREGO STARDANCE from Sunchaser Pictures on Vimeo.

Stunning Astrophoto: Jet Star Roller Coaster Meets Star Trails

A victim of Hurricane Sandy provides the foreground for a stunning view of star trails over Seaside Heights, New Jersey. The Jet Star roller coaster and three other amusement rides fell into the ocean after the partial collapse of Casino Pier during Hurricane Sandy. The roller coaster sitting in the ocean became an iconic symbol of the hurricane’s destruction last fall. Astrophotographer Jack Fusco captured this absolutely incredible shot of the Jet Star under a blanket of stars on April 9, 2013. The Jet Star will soon be dismantled and removed. As one commenter on Flickr said, this shot will live on even after the roller coaster is gone.

See more of Jack’s work on Flickr, Google+ and his website, www.jackfusco.com

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.