Used SpaceX Booster Set for Historic 1st Reflight is Test Fired in Texas

SpaceX Falcon 9 first stage previously flown to space is test fired at the firms McGregor, TX rocket development facility in late January 2017 to prepare for relaunch. Credit: SpaceX

The first orbit class SpaceX rocket that will ever be reflown to launch a second payload to space was successfully test fired by SpaceX engineers at the firms Texas test facility last week.

The once fanciful dream of rocket recycling is now closer than ever to becoming reality, after successful completion of the static fire test on a test stand in McGregor, Texas, paved the path to relaunch, SpaceX announced via twitter.

The history making first ever reuse mission of a previously flown liquid fueled Falcon 9 first stage booster equipped with 9 Merlin 1D engines could blastoff as soon as March 2017 from the Florida Space Coast with the SES-10 telecommunications satellite, if all goes well.

The booster to be recycled was initially launched in April 2016 for NASA on the CRS-8 resupply mission under contract for the space agency.

“Prepping to fly again — recovered CRS-8 first stage completed a static fire test at our McGregor, TX rocket development facility last week,” SpaceX reported.

The CRS-8 Falcon 9 first stage booster successfully delivered a SpaceX cargo Dragon to the International Space Station (ISS) in April 2016.

The Falcon 9 first stage was recovered about 8 minutes after liftoff via a propulsive soft landing on an ocean going droneship in the Atlantic Ocean some 400 miles (600 km) off the US East coast.

First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX

SpaceX, founded by billionaire and CEO Elon Musk, inked a deal in August 2016 with telecommunications giant SES, to refly a ‘Flight-Proven’ Falcon 9 booster.

Luxembourg-based SES and Hawthrone, CA-based SpaceX jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster.”

Exactly how much money SES will save by utilizing a recycled rocket is not known. But SpaceX officials have been quoted as saying the savings could be between 10 to 30 percent.

The SES-10 launch on a recycled Falcon 9 booster was originally targeted to take place before the end of 2016.

That was the plan until another Falcon 9 exploded unexpectedly on the ground at SpaceX’s Florida launch pad 40 during a routine prelaunch static fire test on Sept. 1 that completed destroyed the rocket and its $200 million Amos-6 commercial payload on Cape Canaveral Air Force Station.

The Sept. 1 launch pad disaster heavily damaged the SpaceX pad and launch infrastructure facilities at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Pad 40 is still out of commission as a result of the catastrophe. Few details about the pad damage and repair work have been released by SpaceX and it is not known when pad 40 will again be certified to resume launch operations.

Therefore SpaceX ramped up preparations to launch Falcon 9’s from the firms other pad on the Florida Space Coast – namely historic Launch Complex 39A which the company leased from NASA in 2014.

SpaceX is repurposing historic pad 39A at the Kennedy Space Center, Florida for launches of the Falcon 9 rocket. Ongoing pad preparation by work crews is seen in this current view taken on Jan. 27, 2017. Credit: Ken Kremer/kenkremer.com

Pad 39A is being repurposed by SpaceX to launch the Falcon 9 and Falcon Heavy rockets. It was previously used by NASA for more than four decades to launch Space Shuttles and Apollo moon rockets.

But SES-10 is currently third in line to launch atop a Falcon 9 from pad 39A.

The historic first launch of a Falcon 9 from pad 39A is currently slated for no earlier than Feb. 14 on the CRS-10 resupply mission for NASA to the ISS – as reported here.

The EchoStar 23 comsat is slated to launch next, currently no earlier than Feb 28.

SES-10 will follow – if both flights go well.

SpaceX successfully launched SES-9 for SES in March 2016.

Sunset blastoff of SpaceX Falcon 9 carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Last July, SpaceX engineers conducted a test firing of another recovered booster as part of series of test examining long life endurance testing. It involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.

The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.

Watch the engine test in this SpaceX video:

Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX

SES-10 satellite mission artwork. Credit: SES

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

SES Boldly Goes Where No Firm Has Gone Before, Inks Deal to Fly on 1st SpaceX ‘Flight-Proven’ Booster

First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX
First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX

CAPE CANAVERAL, FL — The telecommunications giant SES is boldly going where no company has gone before by making history in inking a deal today, Aug. 30, to fly the expensive SES-10 commercial satellite on the first ever launch of a ‘Flight-Proven’ SpaceX booster – that’s been used and recovered.

Luxembourg-based SES and Hawthrone, CA-based SpaceX today jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster” before the end of this year.

“The satellite, which will be in a geostationary orbit and expand SES’s capabilities across Latin America, is scheduled for launch in Q4 2016. SES-10 will be the first-ever satellite to launch on a SpaceX flight-proven rocket booster,” according to a joint statement.

That first launch of a flight-proven Falcon 9 first stage will use the CRS-8 booster that delivered a SpaceX Dragon to the International Space Station in April 2016. The reflight could happen as soon as October 2016.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket from NASA CRS-8 cargo mission is moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The deal marks a major milestone and turning point in SpaceX CEO and billionaire founder Elon Musk’s long sought endeavor to turn the science fictionesque quest of rocket reusability into the scientific fact of reality.

“Thanks for the longstanding faith in SpaceX,” tweeted SpaceX CEO Elon Musk after today’s joint SES/SpaceX announcement.

“We very much look forward to doing this milestone flight with you.”

Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket recycling – in a way that will one day lead to his vision of a ‘City on Mars.’

Over just the past 8 months, SpaceX has successfully recovered 6 of the firms Falcon 9 first stage boosters intact – by land and by sea since December 2015 – in hopes of recycling and reusing them with new payloads from paying customers daring enough to take the risk of stepping into the unknown!

SES is that daring company and has repeatedly shown faith in SpaceX. They were the first commercial satellite operator to launch with SpaceX with SES-8 back in October 2013. Earlier this year the firm also launched SES-9 on the recently upgraded full thrust version of Falcon 9 in March 2016.

Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 prior to launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

“Having been the first commercial satellite operator to launch with SpaceX back in 2013, we are excited to once again be the first customer to launch on SpaceX’s first ever mission using a flight-proven rocket. We believe reusable rockets will open up a new era of spaceflight, and make access to space more efficient in terms of cost and manifest management,” said Martin Halliwell, Chief Technology Officer at SES, in the statement.

“This new agreement reached with SpaceX once again illustrates the faith we have in their technical and operational expertise. The due diligence the SpaceX team has demonstrated throughout the design and testing of the SES-10 mission launch vehicle gives us full confidence that SpaceX is capable of launching our first SES satellite dedicated to Latin America into space.”

SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it. So they have been carefully inspecting it for structural integrity, checking all the booster systems, plumbing, avionics, etc and retesting the first stage Merlin 1D engines.

Multiple full duration hot fire tests of the fully integrated booster have been conducted at the SpaceX test facility in McGregor, Texas as part of long life endurance testing. This includes igniting all nine used first stage Merlin 1D engines housed at the base of a landed rocket for approximately three minutes.

For the SES-10 launch, SpaceX plans to use the Falcon 9 booster that landed on an ocean going drone ship from NASA’s CRS-8 space station mission launched in April 2016, said Hans Koenigsmann, SpaceX vice president of Flight Reliability, to reporters recently at the Kennedy Space Center during NASA’s CRS-9 cargo launch to the ISS.

SpaceX has derived many lessons learned on how to maximize the chances for a successful rocket recovery, Koenigsmann explained to Universe Today at KSC when I asked for some insight.

“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.

“There are no structural changes first of all.”

“The key thing is to protect the engines- and make sure that they start up well [in space during reentry],” Koenigsmann elaborated, while they are in flight and “during reentry.”

“And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”

“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”

The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.

“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told me.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

“Re-launching a rocket that has already delivered spacecraft to orbit is an important milestone on the path to complete and rapid reusability,” said Gwynne Shotwell, President and Chief Operating Officer of SpaceX.

“SES has been a strong supporter of SpaceX’s approach to reusability over the years and we’re delighted that the first launch of a flight-proven rocket will carry SES-10.”

Remote camera photo from "Of Course I Still Love You" droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX

How much money will SES save by using a spent, recycled first stage Falcon 9 booster?

SpaceX says the price of a completely new Falcon 9 booster is approximately $60 million.

Shotwell has said SpaceX will reduce the cost about 30%. So SES might be saving around $20 million – but there are no published numbers regarding this particular launch contract.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

SES-10 will be the first SES satellite wholly dedicated to Latin America.

“The satellite will provide coverage over Mexico, serve the Spanish speaking South America in one single beam, and cover Brazil with the ability to support off-shore oil and gas exploration,” according to SES.

It will replace capacity currently provided by two other satellites, namely AMC-3 and AMC-4, and will “provide enhanced coverage and significant capacity expansion over Latin America – including Mexico, Central America, South America and the Caribbean. The high-powered, tailored and flexible beams will provide direct-to-home broadcasting, enterprise and mobility services.”

It is equipped with a Ku-band payload of 55 36MHz transponder equivalents, of which 27 are incremental. It will be stationed at 67 degrees West.

SES-10 was built by Airbus Defence and Space and is based on the Eurostar E3000 platform. Notably it will use “an electric plasma propulsion system for on-orbit manoeuvres and a chemical system for initial orbit raising and some on-orbit manoeuvres.”

SES-10 satellite mission artwork. Credit: SES
SES-10 satellite mission artwork. Credit: SES

The most recent SpaceX Falcon 9 booster to be recovered followed the dramatic overnight launch of the Japanese JCSAT-16 telecom satellite on Aug. 14.

Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s.  Credit: Ken Kremer/kenkremer.com
Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s. Credit: Ken Kremer/kenkremer.com

It was towed back into port on atop the diminutive OCISLY ocean landing platform that measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The 6 successful Falcon upright first stage landings are part of a continuing series of SpaceX technological marvels/miracles rocking the space industry to its core.

SpaceX had already successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27, prior to JCSAT-16 on Aug. 14.

Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016.    Credit:  Julian Leek
SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016. Credit: Julian Leek
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40.  Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40. Credit: Ken Kremer/kenkremer.com

SpaceX Adopts Lessons Learned From Multiple Booster Landings – Test Fires Recovered 1st Stage: Videos

SpaceX completed the first full duration test firing of a landed first booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas.
SpaceX completed the first full duration test firing of a landed first stage booster on July 28, 2016 on a test stand at their rocket development facility in McGregor, Texas. Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX founder Elon Musk’s daring dream of rocket recycling and reusability is getting closer and closer to reality with each passing day. After a breathtaking series of experimental flight tests aimed at safely landing the firms spent Falcon 9 first stages on land and at sea over the past half year the bold effort achieved another major milestone by just completing the first full duration test firing of one of those landed boosters.

On Thursday, July 28, SpaceX engineers successful conducted a full duration static engine test firing of the 156-foot-tall (47-meter) recovered Falcon 9 first stage booster while held down on a test stand at the company’s rocket development test facility in McGregor, Texas. The engines fired up for about two and a half minutes.

The SpaceX team has been perfecting the landing techniques by adopting lessons learned after each landing campaign attempt.

What are the lessons learned so far from the first stage landings and especially the hard landings? Are there any changes being made to the booster structure? How well did the landing burn scenario perform?

During SpaceX’s recent CRS-9 launch campaign media briefings at NASA’s Kennedy Space Center on July 18, I asked SpaceX VP Hans Koenigsmann for some insight.

“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the recent media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.

“There are no structural changes first of all.”

“The key thing is to protect the engines,” Koenigsmann elaborated, while they are in flight and “during reentry”.

The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.

“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told Universe Today.

After separating from the second stage at hypersonic speeds of up to some 4000 mph, the first stage engines are reignited to reverse course and do a boost backburn back to the landing site and slow the rocket down for a soft landing, via supersonic retropulsion.

Proper engine performance is critical to enabling a successful touchdown.

“The key thing is to protect the engines – and make sure that they start up well [in space during reentry],” Koenigsmann explained. “And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”

“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”

Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket reuse – in a way that will one day lead to his vision of a ‘City on Mars.’

SpaceX hopes to refly a once flown booster later this year, sometime in the Fall, using the ocean landed Falcon from NASA’s CRS-8 space station mission launched in April, says Koenigsmann.

But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it.

The July 28 test firing is part of that long life endurance testing and involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.

The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.

Watch the engine test in this SpaceX video:

Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX

The used 15 story Falcon booster had successfully carried out an intact soft landing on an ocean going platform after launching a Japanese commercial telecommunications satellite only two months ago on May 6 of this year.

Just 10 minutes after launching the JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO), the used first stage relit a first stage Merlin 1D engine.

It conducted a series of three recovery burns to maneuver the rocket to a designated landing spot at sea or on land and rapidly decelerate it from supersonic speeds for a propulsive soft landing, intact and upright using a quartet of landing legs that deploy in the final moments before a slow speed touchdown.

However, although the landing was upright and intact, this particular landing was also classed as a ‘hard landing’ because the booster landed at a higher velocity and Merlin 1D first stage engines did sustain heavy damage as seen in up close photos and acknowledged by Musk.

“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted at the time.

Nevertheless it all worked out spectacularly and this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

Indeed prior to liftoff, Musk had openly doubted a successful landing outcome, since this first stage was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform compared to ISS missions, for example.

So although this one cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of the booster and its various components – as now audaciously demonstrated by the July 28 engine test stand firing.

“We learned a lot even on the missions where things go wrong with the landing, everything goes well on the main mission of course,” said Koenigsmann.

Altogether SpaceX has successfully soft landed and recovered five of their first stage Falcon 9 boosters intact and upright since the history making first ever land landing took place just seven months ago in December 2015 at Cape Canaveral Air Force Station in Florida.

The most recent launch and landing occurred last week on July 18, 2016 during the dramatic midnight blastoff of the SpaceX CRS-9 commercial cargo resupply mission to the International Space Station (ISS) under contract for NASA.

See the stupendous events unfold in up close photos and videos herein.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Following each Falcon 9 launch and landing attempt, SpaceX engineers assess the voluminous and priceless data gathered, analyze the outcome and adopt the lessons learned.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster back at Cape Canaveral Air Force Station – at the location called Landing Zone 1 (LZ 1).

Watch this exquisitely detailed up close video showing the CRS-9 first stage landing at LZ 1, as shot by space colleague Jeff Seibert from the ITL causeway at CCAFS- which dramatically concluded with multiple shockingly loud sonic booms rocketing across the Space Coast and far beyond and waking hordes of sleepers:

Video caption: This was the second terrestrial landing of a SpaceX Falcon 9 booster on July 18, 2016. It had just launched the CRS9 Dragon mission towards the ISS. The landing took place at LZ1, formerly known as Pad 13, located on CCAFS and caused a triple sonic boom heard 50 miles away. Credit: Jeff Seibert

The history making first ever ground landing successfully took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.

SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

OCISLY is generally stationed approximately 400 miles (650 kilometers) off shore and east of Cape Canaveral, Florida in the Atlantic Ocean. The barge arrives back in port at Port Canaveral several days after the landing, depending on many factors like weather, port permission and the state of the rocket.

However while trying to extend the touchdown streak to 4 in a row during the latest drone ship landing attempt following the June 15 Eutelsat telecom launch to GTO, the booster basically crashed because it descended too quickly due to insufficient thrust from the Merlin descent engines.

The rocket apparently ran out of liquid oxygen fuel in the final moments before touchdown, hit hard, tipped over and pancaked onto the deck.

“Looks like early liquid oxygen depletion caused engine shutdown just above the deck,” Musk explained via twitter at the time.

“Looks like thrust was low on 1 of 3 landing engines. High g landings v sensitive to all engines operating at max.”

Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016  commercial payload launch.  Credit: Julian Leek
Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016 commercial payload launch. Credit: Julian Leek

“We learned a lot even on the mission where things go wrong with the landing,” Koenigsmann explained. “Everything goes well on the main mission of course.”

“That’s actually something where you have successful deploy and the landing doesn’t quite work- and yet its the landing that gets all the attention.”

“But even on those landings we learned a lot. In particular on the last landing [from Eutelsat launch] we learned a lot.”

“We believe we found a way to operationally protect these engines and to make it safer for them to start up – and to come up to full thrust and stay at full thrust.”

What exactly does “protecting the engines” mean “in flight?”

“Yes I mean protecting the engines during reentry,” Koenigsmann told me.

“That’s when the engines get hot. We enter with the engines facing the flow. So its basically the engines directly exposed to the hot flow. And that’s when you need to protect the engines and the gases and liquids that are in the engines. To make sure that nothing boils off and does funny things.”

“So all in all these series of drone ship landings has been extremely successful, even when we didn’t recover all the first stages [fully intact].”

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing SpaceX and CRS-9 mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Watch my launch pad video of the CRS-9 launch:

Video caption: SpaceX Falcon 9 lifts off with Dragon CRS-9 resupply ship bound for the International Space Station on July 18, 2016 at 12:45 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

Watch this CRS-9 launch and landing video compilation from space colleague Mike Wagner:

Video caption: SpaceX CRS-9 Launch and Landing compilation on 7/18/2016. Local papers reported 911 calls for a loud explosion up to 75 miles away. This sonic boom seemed louder than the first landing at the Cape in Dec. 2015. Credit: USLaunchReport

Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Recovered SpaceX Falcon 9 Booster Moves Back to KSC for Eventual Reflight

Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Note: landing legs were removed. Credit: Julian Leek

The recovered SpaceX Falcon 9 first stage booster that successfully carried out history’s first upright touchdown from a just flown rocket onto a droneship at sea, has just been moved back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Space photographers and some lucky tourists coincidentally touring through Cape Canaveral Air Force Station in the right place at the right time on a tour bus, managed to capture exquisite up close images and videos (shown above and below) of the rockets ground transport on Tuesday, April 19, along the route from its initial staging point at Port Canaveral to a secure area on KSC.

It was quite a sight to the delight of all who experienced this remarkable moment in space history – that could one day revolutionize space flight by radically slashing launch costs via recycled rockets.

The boosters nine first stage Merlin 1 D engines were wrapped in a protective sheath during the move as seen in the up close imagery.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

The SpaceX Falcon 9 had successfully conducted a dramatic propulsive descent and soft landing on a barge some 200 miles offshore in the Atlantic Ocean on April 8, about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 cargo mission for NASA to the International Space Station (ISS).

The used Falcon 9 booster then arrived back into Port Canaveral, Florida four days later, overnight April 12, after being towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The spent 15 story tall Falcon 9 booster was transported to KSC by Beyel Bros. Crane and Rigging, starting around 9:30 a.m.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

After initial cleaning and clearing of hazards and processing to remove its four landing legs at the Port facility, the booster was carefully lowered by crane horizontally into a retention cradle on a multiwheel combination Goldhofer/KMAG vehicle and hauled by Beyel to KSC with a Peterbilt Prime Mover truck.

The Falcon 9 was moved to historic Launch Complex 39A at KSC for processing inside SpaceX’s newly built humongous hanger located at the pad perimeter.

Indeed this Falcon 9 first stage is now residing inside the pad 39A hanger side by side with the only other flown rocket to be recovered; the Falcon 9 first stage that accomplished a land landing back at the Cape in December 2015 – as shown in this image from SpaceX CEO Elon Musk titled “By land and sea”.

Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk
Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk

Watch this video of the move taken from a tour bus:

SpaceX engineers plan to conduct a series of some 12 test firings of the first stage Merlin 1 D engines to ensure all is well operationally in order to validate that the booster can be re-launched.

It may be moved back to Space Launch Complex-40 for the series of painstakingly inspections, tests and refurbishment.

The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek
The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek

SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.

The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.

The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.

Whenever it happens, it will count as the first relaunch of a used rocket in history.

SpaceX has leased Pad 39A from NASA and is renovating the facilities for future launches of the existing upgraded Falcon 9 as well as the Falcon Heavy currently under development.

SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Landing on the barge was a secondary goal of SpaceX and not part of the primary mission sending science experiments and cargo to the ISS crew under a resupply contract with for NASA.

Watch this SpaceX Falcon 9/Dragon CRS-8 launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Space Station Gets Experimental New Room with Installation of BEAM Expandable Habitat

Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra
Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra

The International Space Station (ISS) grew in size today, April 16, following the successful installation of an experimental new room – the BEAM expandable habitat module.

Engineers at NASA’s Johnson Space Center in Houston used the space station’s high tech robotic arm to pluck the small module known as the Bigelow Expandable Activity Module (BEAM) out from the unpressurized rear truck section of the recently arrived SpaceX Dragon cargo freighter, and added it onto the orbiting laboratory complex.

BEAM was manufactured by Las Vegas-based Bigelow Aerospace under a $17.8 million contract with NASA. It will remain joined to the station for at least a two-year test period.

The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity with humans for the first time.

It was extracted from the Dragon’s trunk overnight with the robotic Canadarm2 and then installed on the aft port of the Tranquility module at 5:36 a.m. EDT over a period of about 4 hours. The station was flying over the Southern Pacific Ocean at the moment of berthing early Saturday.

NASA astronaut and ISS Expedition 47 crew member Tim Kopra snapped a super cool photo of BEAM in transit, shown above.

BEAM module after installation on the ISS Tranquility module on April 16, 2016.  Credit: NASA
BEAM module after installation on the ISS Tranquility module on April 16, 2016. Credit: NASA

BEAM was carried to orbit in a compressed form inside the Dragon’s truck following the April 8 blast off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 resupply mission for NASA to the ISS.

BEAM is a prototype inflatable habitat that could revolutionize the method of construction of future habitable modules intended for use both in Low Earth Orbit (LEO) as well as for deep space expeditions Beyond Earth Orbit (BEO) to destinations including the Moon, Asteroids and Mars.

The advantage of expandable habitats is that they offer a much better volume to weight ratio compared to standard rigid metallic structures such as all of the current ISS pressurized modules.

It is constructed of lighter weight reinforced fabric rather that metal. This counts as the first test of an expandable module and investigators want to determine how it fares with respect to protection again solar radiation, space debris and the temperature extremes of space.

Furthermore they also take up much less space inside the payload fairing of a rocket during launch.

Watch this animation showing how Canadarm2 transports BEAM from the Dragon spacecraft to a side berthing port on Tranquility where it will soon be expanded.

Animation shows how the International Space Station robotic arm will transport BEAM from the Dragon spacecraft to a side berthing port on the Harmony module where it will then be expanded.  Credit: NASA
Animation shows how the International Space Station robotic arm will transport BEAM from the Dragon spacecraft to a side berthing port on the Tranquility module where it will then be expanded. Credit: NASA

Current plans call for the module to be expanded in late May with air. It will expand to nearly five times from its compressed size of 8 feet in diameter by 7 feet in length to roughly 10 feet in diameter and 13 feet in length. Once inflated it will provide 565 cubic feet (16 m3) of habitable volume.

Exactly how it will expand is also an experiment and could happen in multiple ways. Therefore the team will exercise great caution and carefully monitor the inflation and check for leaks.

The Bigelow Expandable Activity Module, or BEAM, is attached to the International Space Station early on April 16, 2016.  Credit: NASA
The Bigelow Expandable Activity Module, or BEAM, is attached to the International Space Station early on April 16, 2016. Credit: NASA

The astronauts will first enter BEAM about a week after the expansion. Thereafter they will visit it about 2 or 3 times per year for several hours to retrieve sensor data and assess conditions, say NASA officials.

Visits could perhaps occur even frequently more if NASA approves. says Bigelow CEO Robert Bigelow.

BEAM is an extraordinary test bed in itself.

This computer rendering depicts the Canadarm2 robotic arm removing BEAM from the back of the Space X Dragon spacecraft.  Credit: NASA
This computer rendering depicts the Canadarm2 robotic arm removing BEAM from the back of the Space X Dragon spacecraft. Credit: NASA

But Robert Bigelow hopes that BEAM can be used to conduct science experiments after maybe a six month shakedown cruise, if all goes well, and NASA approves a wider usage.

Bigelow Aerospace has already taken in the next step in expandable habitats.

Earlier this week, Bigelow and rocket builder United Launch Alliance (ULA) announced they are joining forces to develop and launch the B330 expandable commercial habitat module in 2020 on an Atlas V. It is about 20 times larger and far more capable. Details in my story here.

Robert Bigelow says he hopes that NASA will approve docking of the B330 at the ISS.

This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module. Credits: Bigelow Aerospace
This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module.
Credits: Bigelow Aerospace

The SpaceX Dragon spacecraft delivered almost 7,000 pounds of cargo.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

Sensational Photos Show ‘Super Smooth’ Droneship Touchdown of SpaceX Falcon 9 Booster – SpaceX VP

Remote camera photo from "Of Course I Still Love You" droneship of SpaceX Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of SpaceX Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission. Credit: SpaceX

SpaceX has released a slew of up close photos showing the sensational “super smooth” touchdown last week of a Falcon 9 booster on a tiny droneship at sea located several hundred miles (km) off the East coast of Florida.

“This time it really went super smooth,” Hans Koenigsmann, SpaceX VP of Flight Reliability, told Universe Today at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY. “The rest is history almost.”

The dramatic propulsive descent and soft landing of the SpaceX Falcon 9 first stage took place last Friday, April 8 about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 resupply mission for NASA to the International Space Station (ISS).

The breathtaking new photos show the boosters central Merlin 1D engine refiring to propulsively slow the first stage descent with all four landing legs unfurled and locked in place at the bottom and all four grid fins deployed at the top.

Why did it all go so well, comparing this landing to the prior attempts? Basically the return trajectory was less challenging due to the nature of the NASA payload and launch trajectory.

“We were more confident about this droneship landing,” Koenigsmann said at NEAF.

“I knew the trajectory we had [for CRS-8] was more benign, although not super benign. But certainly benigner than for what we had before on the SES-9 mission, the previous one. The [droneship] landing trajectory we had for the previous one on SES-9 was really challenging.”

“This one was relatively benign. It was really maybe as benign as for the Orbcomm launch [in December 2015] where we had the land landing.”

Read my Orbcomm story here about history’s first ever successful land landing of a spent SpaceX Falcon 9 booster.

Timelapse sequence shows dramatic landing of SpaceX Falcon 9 first stage on "Of Course I Still Love You" droneship as captured by remote camera on 8 April 2016. Credit: SpaceX
Timelapse sequence shows dramatic landing of SpaceX Falcon 9 first stage on “Of Course I Still Love You” droneship as captured by remote camera on 8 April 2016. Credit: SpaceX

The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The ocean going ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks.

It was stationed some 200 miles off shore of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

Remote camera photo from "Of Course I Still Love You" droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX

“The CRS-8 launch was one of the easiest ones we ever had.”

The revolutionary rocket recovery event counts as the first successful droneship landing of a rocket in history and is paving the way towards eventual rocket recycling aimed at dramatically slashing the cost of access to space.

The final moments of the 15 story tall boosters approach and hover landing was captured up close in stunning high resolution imagery recorded by multiple remote cameras set up right on the ocean going platform by SpaceX photographer Ben Cooper.

Landing the booster on land rather than at sea was actually an option this time around. But SpaceX managers wanted to try and nail a platform at sea landing to learn more and validate their calculations and projections.

“As Elon Musk said at the post-landing press conference of Friday, we could have actually come back to land- to land this one on land,” Koenigsmann elaborated.

“But we decided to land on the drone ship first to make sure that on the droneship we had worked everything out!”

“And that’s exactly what happened. So I felt this was only going out a little bit on the limb,” but not too much.”

Remote camera photo from "Of Course I Still Love You" droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX

Before the CRS-8 launch, Koenigsmann had rated the chances of a successful landing recovery rather high.

Three previous attempts by SpaceX to land on a droneship at sea were partially successful, as the stage made a pinpoint flyback to the tiny droneship, but it either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.

“Everything went perfect with the launch,” Koengismann said. “We just still have to do the post launch data review.”

“I am really glad this went well.”

Droneship touchdown of SpaceX Falcon 9 first stage on "Of Course I Still Love You" as captured by remote camera on 8 April 2016. Credit: SpaceX
Droneship touchdown of SpaceX Falcon 9 first stage on “Of Course I Still Love You” as captured by remote camera on 8 April 2016. Credit: SpaceX

This recovered Falcon 9 booster finally arrived back into Port Canaveral, Florida four days later in the early morning hours of Tuesday, April 12 at about 1:30 a.m. EDT.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The primary goal of the Falcon 9 launch on April 8 was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Dragon arrived at the station on Sunday, April 10, loaded with 3 tons of supplies, science experiments and the BEAM experimental expandable module.

Landing on the barge was a secondary goal of SpaceX and not part of the primary mission for NASA.

Watch this launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The recovered booster will be cleaned and defueled, says SpaceX spokesman John Taylor.

SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.

SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.

Droneship touchdown of SpaceX Falcon 9 first stage on "Of Course I Still Love You" as captured by remote camera on 8 April 2016. Credit: SpaceX
Droneship touchdown of SpaceX Falcon 9 first stage on “Of Course I Still Love You” as captured by remote camera on 8 April 2016. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Falcon 9 booster successfully lands on droneship after blastoff on Dragon CRS-8 mission to ISS for NASA on April 8, 2016.  Credit: SpaceX
SpaceX Falcon 9 booster successfully lands on droneship after blastoff on Dragon CRS-8 mission to ISS for NASA on April 8, 2016. Credit: SpaceX
Hans Koenigsmann, SpaceX VP of Flight Reliability at NorthEast Astronomy and Space Forum, NY, discusses SpaceX Falcon 9 and Dragon launches. Credit: Ken Kremer/kenkremer.com
Hans Koenigsmann, SpaceX VP of Flight Reliability at NorthEast Astronomy and Space Forum, NY, discusses SpaceX Falcon 9 and Dragon launches. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 Recovered 1st Stage Arrives Back in Port After Historic Upright Landing at Sea

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

The SpaceX Falcon 9 that triumphantly accomplished history’s first upright landing of the spent first stage of a rocket on a barge at sea – after launching a critical cargo payload to orbit for NASA – sailed back into port at Cape Canaveral overnight in the wee hours of this morning, April 12, standing tall.

The recovered 15 story tall Falcon 9 booster arrived back into Port Canaveral, Florida at about 130 a.m. early today, towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks. The landing platform measures only about 170 ft × 300 ft (52 m × 91 m).

A small crowd of excited onlookers and space photographers savored and cheered the incredible moment that is surely changing the face and future of space exploration and travel.

The two stage SpaceX Falcon 9 rocket boasting over 1.5 million pounds of thrust originally launched on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Before the launch, SpaceX managers rated the chances of a successful landing recovery rather high.

Three previous attempts by SpaceX to land on a barge at sea were partially successful, as the stage made a pinpoint flyback to the tiny ship but either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.

“We were very optimistic of the chances of a successful landing on this mission,” Hans Koenigsmann told Universe Today in an exclusive post landing interview at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch from and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

Coincidentally, today marks two major anniversaries in the history of space flight; the 55th anniversary of the launch of Russia’s Yuri Gagarin, the first man in space on Vostok-1 on April 12, 1961; and the 35th anniversary of the launch of shuttle Columbia on America’s first space shuttle mission (STS-1) on April 12, 1981 with John Young and Bob Crippen.

The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.

The stage will now be painstakingly inspected, tested and refurbished.

The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.

At liftoff, Dragon was loaded with over 3.5 tons of research experiments and essential supplies for the six man crew living aboard the orbiting science complex.
Watch this launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The Dragon CRS-8 cargo ship successfully arrived at the station on Sunday, April 10 and was joined to the million pound station at the Earth-facing port of the Harmony module.

The secondary objective was to try and land the Falcon 9 first stage on the ASDS done ship located some 200 miles off shore in the Atlantic Ocean.

The action-packed and propulsive landing took place some 10 minutes after liftoff.

In the final moments of the descent to the drone ship, one of the first stage Merlin 1D engines was reignited to slow the boosters descent speed as the quartet of side-mounted landing legs at the boosters base were unfurled, deployed and locked into place.

The entire launch and landing sequence was webcast live on NASA TV and by SpaceX.

The recovered booster atop the “Of Course I Still Love You” barge was towed back to port by the Elsbeth III tug.

“Home sweet home”, said my friend and veteran space photographer Julian Leek, who witnessed the boosters arrival back in port overnight.

“It was really a sight to see. Pilots and tugs did a well coordinated job to bring her in.”

After daylight dawned, a crane lifted the recovered booster into a storage cradle where it will remain upright for a few days. Then it will be lowered and placed horizontally for transport a few miles north to a SpaceX processing hanger back at pad 39A at the Kennedy Space Center.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The booster will be cleaned and defueled, SpaceX spokesman John Taylor told the media.

SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch from and landing on April 8 from Cape Canaveral Air Force Station.  Credit: SpaceX
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Dragon Carrying New Inflatable Room Captured and Mated to Space Station

SpaceX Dragon CRS-8 over Africa coming in for the approach to the ISS.  Credit: NASA/Tim Kopra/@astro_tim
SpaceX Dragon CRS-8 over Africa coming in for the approach to the ISS. Credit: NASA/Tim Kopra/@astro_tim

A SpaceX commercial cargo freighter jam packed with more than three and a half tons of research experiments, essential crew supplies and a new experimental inflatable habitat reached the International Space Station (ISS) and the gleeful multinational crew of six astronauts and cosmonauts on Sunday, April 10.

The U.S. SpaceX Dragon cargo craft arrived at the ISS following a carefully choreographed orbital chase inaugurated by a spectacular launch atop an upgraded SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station, Florida, on Friday, April 8.

As the massive Earth orbiting outpost was soaring some 250 miles (400 kilometers) over the Pacific Ocean west of Hawaii, British astronaut Tim Peake of ESA (European Space Agency), with the able assistance of NASA’s Jeff Williams, successfully captured the SpaceX Dragon CRS-8 resupply ship with the station’s Canadian-built robotic arm.

Peake painstakingly maneuvered and deftly grappled Dragon with the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 at 7:23 a.m. EDT for installation on the million pound orbital lab complex.

“Looks like we’ve caught a Dragon,” Peake radioed back to Mission Control. The orbital operational was webcast live on NASA TV.

“Awesome capture by crewmate Tim Peake,” said fellow NASA crewmate Tim Kopra who snapped a series of breathtaking images of the approach and capture.

Final Approach for @SpaceXDragon before an awesome capture by crewmate @Astro_TimPeake! Credit: NASA/Tim Kopra/@astro_tim
Final Approach for @SpaceXDragon before an awesome capture by crewmate @Astro_TimPeake! Credit: NASA/Tim Kopra/@astro_tim

Ground controllers at Mission Control in Houston then issued commands to carefully guide the robotic arm holding the Dragon freighter to the Earth-facing port on the bottom side of the Harmony module for its month long stay at the space station.

The ship was finally bolted into place at 9:57 a.m. EDT as the station flew 250 miles (400 km) over southern Algeria.

Watch this NASA video compiling all the highlights of the arrival and mating of the SpaceX Dragon on April 10, 2016 carrying the BEAM habitat module and 3.5 tons of science and supplies. Credit: NASA

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marks the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter only just arrived on March 26 and is now installed at a neighboring docking port on the Unity module.

The SpaceX Dragon is seen shortly after it was mated to the Harmony module. The Cygnus cargo craft with its circular solar arrays and the Soyuz TMA-19M spacecraft (bottom right) are also seen in this view. Credit: NASA TV
The SpaceX Dragon is seen shortly after it was mated to the Harmony module. The Cygnus cargo craft with its circular solar arrays and the Soyuz TMA-19M spacecraft (bottom right) are also seen in this view. Credit: NASA TV

Cygnus was launched to the ISS atop a ULA Atlas V barely two weeks earlier on March 22 – as I reported on and witnessed from the Kennedy Space Center press site.

“With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six,” say NASA officials.

The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.

BEAM is a prototype inflatable habitat that the crew will soon pluck from the Dragon’s truck with the robotic arm for installation on a side port of the Harmony module.

The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station.  Credits: Bigelow Aerospace, LLC
The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station. Credits: Bigelow Aerospace, LLC

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.

Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.

Video caption: 5 camera views of the SpaceX Falcon 9 launch of the CRS-8 mission to the ISS on 04/08/2016. Credit: Jeff Seibert/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Launches to ISS with BEAM Habitat Prototype and Lands First Stage At Sea

SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

All around, today, April 8, was a great day for the future of space exploration. SpaceX successfully restarted their critical cargo flights for NASA to stock the International Space Station (ISS) with essential supplies and groundbreaking science experiments, while the innovative firm also successfully landed the first stage of their Falcon 9 rocket on a barge at sea.

The triumphant ‘Return to Flight’ launch of the upgraded SpaceX Falcon 9 with the Dragon CRS-8 cargo freighter was the primary goal of Friday’s launch and validated the hardware fixes put in place following the catastrophic failure of the previous Dragon CRS-7 cargo ship two minutes after liftoff on June 28, 2015 due to a faulty strut in the boosters second stage.

Landing the booster safely on a drone ship at sea was the secondary goal of the flight but is critical towards achieving the vision of rocket recovery and reusability at the heart of SpaceX Founder Elon Musk’s dream of slashing the cost of access to space and one day establishing a ‘City on Mars.”

The weather was fantastic in the sunshine state as the two stage SpaceX Falcon 9 rocket boasting over 1.3 million pounds of thrust launched on time Friday at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

SpaceX Falcon 9 rocket with a Dragon spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credits: NASA
SpaceX Falcon 9 rocket with a Dragon spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credits: NASA

The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory.

Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Packed aboard the Dragon’s unpressurized trunk section is the experimental Bigelow Expandable Activity Module (BEAM) – an experimental expandable capsule that the crew will attach to the space station. The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity. BEAM will expand to roughly 13-feet-long and 10.5 feet in diameter after it is installed.

Among the new experiments arriving to the station will be Veggie-3 to grow Chinese lettuce in microgravity as a followup to Zinnias recently grown, an investigation to study muscle atrophy and bone loss in space, using microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease, as well as reflight of 25 student experiments from Student Spaceflight Experiments Program (SSEP) Odyssey II payload that were lost during the CRS-7 launch failure.

“The cargo will allow investigators to use microgravity conditions to test the viability of expandable space habitats, assess the impact of antibodies on muscle wasting, use protein crystal growth to aid the design of new disease-fighting drugs and investigate how microbes could affect the health of the crew and their equipment over a long duration mission,” said NASA Deputy Administrator Dava Newman.

SpaceX Falcon 9 rocket with a Dragon spacecraft streak to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Julian Leek
SpaceX Falcon 9 rocket with a Dragon spacecraft streak to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

Dragon reached its preliminary orbit about 10 minutes after launch and deployed its solar arrays as targeted and as seen on the live webcast. It now begins a carefully choreographed series of thruster firings to reach the space station.

After a 2 day orbital chase Dragon is set to arrive at the orbiting outpost on Sunday, April 10.

NASA astronaut Jeff Williams and ESA (European Space Agency) astronaut Tim Peake will then reach out with the station’s Canadian-built robotic arm to grapple and capture the Dragon spacecraft.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. Live coverage of the rendezvous and capture will begin at 5:30 a.m. on NASA TV, with installation set to begin at 9:30 a.m.

In a historic first, the launch of a SpaceX Dragon cargo spacecraft sets the stage for the first time that two American cargo ships will be simultaneously attached to the ISS. The Orbital ATK Cygnus cargo freighter launched just launched on March 22 and arrived on March 26 at a neighboring docking port on the Unity module.

Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.

SpaceX Falcon 9 rocket with a Dragon spacecraft streaks to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. As seen from the Quality Inn Kennedy Space Center, Titusville, Fl.  Credit: Ashley Crouch
SpaceX Falcon 9 rocket with a Dragon spacecraft streaks to orbit after launch on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. As seen from the Quality Inn Kennedy Space Center, Titusville, Fl. Credit: Ashley Crouch

SpaceX CRS-8 is the eighth of up to 20 missions to the ISS that SpaceX will fly for NASA under the Commercial Resupply Services (CRS) contract.

SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

SpaceX Dragon Set for ‘Return to Flight’ Launch to ISS Apr. 8 – Watch Live

A Falcon 9 rocket with a Dragon spacecraft stand at Space Launch Complex 40 at Cape Canaveral Air Force Station before the CRS-8 mission to deliver experiments and supplies to the International Space Station.  Credits: SpaceX
A Falcon 9 rocket with a Dragon spacecraft stand at Space Launch Complex 40 at Cape Canaveral Air Force Station before the CRS-8 mission to deliver experiments and supplies to the International Space Station. Credits: SpaceX

The SpaceX Dragon is set for its ‘Return to Flight’ mission on Friday, April 8, packed with nearly 7000 pounds (3100 kg) of critical cargo and research experiments bound for the six-man crew working aboard the International Space Station.

Blastoff of the commercial SpaceX Falcon 9 carrying the Dragon CRS-8 resupply ship is slated for 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The weather outlook looks great with a forecast of 90 percent “GO” and extremely favorable conditions at launch time of the upgraded, full thrust version of the SpaceX Falcon 9. The only concern is for winds.

The SpaceX/Dragon CRS-8 launch coverage will be broadcast on NASA TV beginning at 3:30 p.m. EDT with additional commentary on the NASA launch blog.

SpaceX also features a live webcast approximately 20 minutes before launch beginning at 4:23 p.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at SpaceX Webcast at – spacex.com/webcast

The launch window is instantaneous, meaning that any delays due to weather or technical issues will results in a minimum 1 day postponement.

A backup launch opportunity exists on Saturday, April 9, at 4:20 p.m. with NASA TV coverage starting at 3:15 p.m.

SpaceX most recently launched the upgraded Falcon 9 from the Cape on March 4, 2016 as I reported from onsite here.
Friday’s launch marks the first for a Dragon since the catastrophic failure of a SpaceX Falcon 9 rocket in flight last year on June 28, 2015 on the CRS-7 resupply mission.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Also packed aboard in the Dragon’s unpressurized trunk section is experimental Bigelow Expandable Activity Module (BEAM) – an experimental expandable capsule that the crew will attach to the space station. The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity. BEAM will expand to roughly 13-feet-long and 10.5 feet in diameter after it is installed.

As a secondary objective, SpaceX will attempt to recover the Falcon 9 first stage by propulsively landing it on an ocean-going droneship barge stationed offshore in the Atlantic Ocean.

The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station.  Credits: Bigelow Aerospace, LLC
The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station. Credits: Bigelow Aerospace, LLC

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

Dragon will reach its preliminary orbit about 10 minutes after launch. Then it will deploy its solar arrays and begin a carefully choreographed series of thruster firings to reach the space station.

After a 2 day orbital chase Dragon is set to arrive at the orbiting outpost on Sunday, April 10.

NASA astronaut Jeff Williams and ESA (European Space Agency) astronaut Tim Peake will then reach out with the station’s Canadian-built robotic arm to grapple and capture the Dragon spacecraft.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. Live coverage of the rendezvous and capture will begin at 5:30 a.m. on NASA TV, with installation set to begin at 9:30 a.m.

In a historic first, the launch of a SpaceX Dragon cargo spacecraft sets the stage for the first time that two American cargo ships will be simultaneously attached to the ISS. The Orbital ATK Cygnus cargo freighter launched just launched on March 22 and arrived on March 26 at a neighboring docking port on the Unity module.

The Bigelow Expandable Activity Module (BEAM), developed for NASA by Bigelow Aerospace, is lifted into SpaceX's Dragon spacecraft for transport to the International Space Station when the spacecraft launches at 4:43 p.m. Friday, April 8, from Space Launch Complex 40 at Cape Canaveral Air Force Station (CCAFS) in Florida.  Credits: SpaceX
The Bigelow Expandable Activity Module (BEAM), developed for NASA by Bigelow Aerospace, is lifted into SpaceX’s Dragon spacecraft for transport to the International Space Station when the spacecraft launches at 4:43 p.m. Friday, April 8, from Space Launch Complex 40 at Cape Canaveral Air Force Station (CCAFS) in Florida. Credits: SpaceX

Among the new experiments arriving to the station will be Veggie-3 to grow Chinese lettuce in microgravity as a followup to Zinnias recently grown, an investigation to study muscle atrophy and bone loss in space, using microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease, as well as reflight of 25 student experiments from Student Spaceflight Experiments Program (SSEP) Odyssey II payload that were lost during the CRS-7 launch failure.

Dragon will remain at the station until it returns to Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the coast of Baja California. It will be packed with numerous science samples, including those collected by 1 year crew member Scott Kelly, for return to investigators, some broken hardware for repair and some items of trash for disposal.

SpaceX CRS-8 is the eighth of up to 20 missions to the ISS that SpaceX will fly for NASA under the Commercial Resupply Services (CRS) contract.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

Patch for the SpaceX CRS-8 mission to the ISS. Credit: SpaceX
Patch for the SpaceX CRS-8 mission to the ISS. Credit: SpaceX
SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40.  Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40. Credit: Ken Kremer/kenkremer.com