Virgin Galactic's SpaceShipTwo VSS Unity plane soars high during a test flight in May. (Virgin Galactic Photo)
A wellness coach from Antigua and her daughter are getting tickets for a suborbital space trip, thanks to the latest in a line of out-of-this-world sweepstakes going back 20 years. And although not a single spaceflight sweepstakes winner has flown yet, there’s still significant value to such contests, financially and otherwise.
“Being able to give people of all ages and backgrounds equal access to space, and in turn, the opportunity to lead and inspire others back on Earth, is what Virgin Galactic has been building towards for the past two decades,” Virgin Galactic’s billionaire founder, Richard Branson, said in a Nov. 24 news release.
Branson himself broke the good news to Keisha Schahaff at her home on the Caribbean island of Antigua. Schahaff had entered a contest arranged in collaboration with the Omaze online sweepstakes platform and a nonprofit group called Space for Humanity this summer. She ended up winning the random drawing. Her grand prize? Two tickets for a ride on Virgin Galactic’s SpaceShipTwo Unity rocket plane, plus terrestrial travel expenses.
VSS Unity's shiny wings are "feathered" for its test flight over New Mexico. (Virgin Galactic Photo)
Virgin Galactic’s SpaceShipTwo rocket plane crossed its 50-mile-high space boundary over New Mexico for the first time today, after months of challenges.
The trip by VSS Unity marks the first time a spacecraft has been launched so high from a New Mexico spaceport. Unity passed the 50-mile mark twice during tests at California’s Mojave Air and Space Port, in 2018 and 2019. Since then, the plane and its WhiteKnightTwo carrier airplane, dubbed VMS Eve, have been transferred to their operational home base at New Mexico’s Spaceport America.
Virgin Galactic's mothership, WhiteKnightTwo Eve, carries SpaceShipTwo Unity into the air from New Mexico's Spaceport America for a flight test. (Virgin Galactic Photo)
Virgin Galactic lit up SpaceShipTwo’s rocket motor for the first time in the skies over New Mexico today, but only for an instant before the engine shut down and the plane glided back to a safe landing at Spaceport America.
The flight test team had hoped that the SpaceShipTwo craft known as VSS Unity might make it all the way to the 50-mile space milestone with two test pilots at the controls. Unity has made it that high up twice before, in 2018 and 2019, when the test operation was based at Mojave Air and Space Port in California — but this was the first powered test flight planned since operations moved to Spaceport America.
Virgin Galactic, the space tourism arm of Richard Branson’s multinational commercial empire (aka. the Virgin Group) has some bold plans for the future. In the past year, the company carried out two glide tests with their LauncherOne vehicle, completed two successful flight tests with their SpaceShipTwo vehicle, and unveiled the Gateway to Space – their space tourism hub at Spaceport America.
And last week (Monday, August 3rd), the company announced that it had entered into a partnership with engine-maker Rolls-Royce to build a supersonic commercial aircraft that would travel three times the speed of sound (Mach 3). If realized, the proposed aerospace vehicle will carry 19 passengers to altitudes of more than 18,000 meters (60,000 ft) while travelling at speeds 50% faster than the Concorde.
The inaugural flight of Stratolaunch's Roc air-launch system. Credit: stratolaunch.com
In 2011, Microsoft co-founder Paul G. Allen and Scaled Composites founder Burt Rutan announced the creation of Stratolaunch Systems. With the goal of reducing the associated costs of space launches, the company set out to create the world’s largest air-launch-to-orbit system. After many years, these efforts bore fruit with the unveiling of the massive Scaled Composites Model 351 Stratolaunch air carrier in the Summer of 2017.
Similar in principle to Virgin Galactic’s SpaceShipTwo, this behemoth is designed to deploy rockets from high altitudes so they can send payloads to Low-Earth Orbit (LEO). After multiple tests involving engine preburns and taxiing on the runway, the aircraft made its inaugural flight last weekend (Saturday, April 13th) and flew for two and half hours before safely landing again in the Mojave Desert.
Virgin Galactic’s VSS Unity conducted her second powered test flight on Tuesday, May 29th. Credit: Virgin Galactic
When it comes to the dream of commercial space exploration and space tourism, a few names really stand out. In addition to Elon Musk and Jeff Bezos, you have Richard Branson – the founder and CEO of the Virgin Group. For years, Branson has sought to make space tourism a reality through Virgin Galactic, which would take passengers into suborbit using his SpaceShipTwo class of rocket planes.
Unfortunately, Virgin Galactic suffered a number of setbacks in recent years, at the same time that competitors like SpaceX and Blue Origin emerged as competitors. However, the VSS Unity (part of the Virgin Galactic fleet) recently conducted its second powered test flight from the Mojave Air and Space Port on Tuesday, May 29th. While this test is years behind schedule, it marks a significant step towards Branson’s realization of flying customers to space.
This was the second time that the VSS Unity flew since 2014, when the VSS Enterprise suffered a terrible crash while attempting to land, killing one pilot and injuring the other. The first propulsive test took place two months ago after several additional tests were performed on the craft. And with that last success, Virgin Galactic moved ahead with its second powered test earlier this week.
The focus of the latest test flight was to learn more about how the spaceship handles at supersonic speeds. It was also intended to test the control system’s performance when the vehicle was closer to its ultimate commercial configuration. As the company stated, “This involved shifting the vehicle’s center of gravity rearward via the addition of passenger seats and related equipment.”
This statement is a possible indication that the test program is reaching the final stretch before Virgin Galactic allows passengers on the vehicle. However, the company will need to conduct a full-duration flight (which will include a full-duration burn of its rocket motor) before that can happen. This latest test involved only a partial rocket burn, but nevertheless demonstrated the spacecraft’s capabilities at supersonic speed.
The company live-tweeted the entire event, which began at 8:34 AM with the VSS Unity and its carrier mothership (VMS Eve) taxing out to the runway for final checks. For this flight, the pilots were Dave Mackay and Mark “Forger” Stucky while CJ Sturckow and Nicola Pecile piloted of the carrier aircraft. At 8:42 AM (PDT), both craft lifted off, with the company tweeting, “We have take-off. VMS Eve & VSS Unity have taken to the skies and have begun their climb.”
By 9:43 AM, the company announced that the VSS Unity had detached from the VMS Eve and was “flying free”. What followed was a series of live-tweets that indicated the ignition of the VSS Unity’s rocket motor, the shutting down of the motor, and the raising of the tail fins to the “feathered” re-entry position. By 9:55 AM, the company announced a smooth landing for the VSS Unity, signaling the end of the test.
Branson, who was at the Mojave Air and Space Port for the test, released the following statement shortly thereafter:
“It was great to see our beautiful spaceship back in the air and to share the moment with the talented team who are taking us, step by step, to space. Seeing Unity soar upwards at supersonic speeds is inspiring and absolutely breathtaking. We are getting ever closer to realizing our goals. Congratulations to the whole team!”
Branson was also at the center to take in a tour of the facilities of The Spaceship Company (TSC), a sister company of Virgin Galactic that is responsible for developing Virgin Galactic’s future fleet. While there, Branson viewed the next two spaceships that TSC is currently manufacturing, as well as the production facilities for TSC’s spaceship rocket motors.
With the latest test flight complete, the company’s teams will be reviewing the data from this flight and making preparations for the next flight. No indication has been given as to when that will be, or if this test flight will include a full-duration burn of the motor. However, Branson was very happy with the test results, stating:
“Today we saw VSS Unity in her natural environment, flying fast under rocket power and with a nose pointing firmly towards the black sky of space. The pathway that Unity is forging is one that many thousands of us will take over time, and will help share a perspective that is crucial to solving some of humanity’s toughest challenges on planet Earth.”
Artists’ impression of Moon Base Alpha, SpaceX’s envisioned lunar outpost supplied with the BFR. Credit: SpaceX
Meanwhile, Bezos continues to pursue his plans for sending passengers into orbit using his fleet of New Shepard rockets. And of course, Musk continues to pursue the idea of sending tourists to the Moon and Mars using his Big Falcon Rocket (BFR). And with many other private aerospace ventures looking to provide trips into orbit or to the surface of the Moon, there is sure to be no shortage of options for going into space in the near future!
And be sure to check out this video of the VSS Unity’s second test flight, courtesy of Virgin Galactic:
StratoLaunch's Roc aircraft performing taxi tests at the Mojave Air and Space Port. Credit: Stratolaunch Systems Corp
In 2011, Stratolaunch Systems was founded with a simple goal: to reduce the costs of rocket launches by creating the world’s largest air-launch-to-orbit system. Similar to Virgin Galactic’s SpaceShipTwo, this concept involves a large air carrier – Scaled Composites Model 351 (aka. the “Roc”) – deploying rockets from high altitudes so they can deliver small payloads to Low-Earth Orbit (LEO).
Recently, the aircraft reached a major milestone when it conducted its second taxi test at the Mojave Air and Space Port. The test consisted of the aircraft rolling down the runway at a speed of 74 km/h (46 mph) in preparation for its maiden flight. The event was captured on video and posted to twitter by Stratolaunch Systems (and Microsoft) co-founder Paul Allen, who was on hand for the event.
The Roc is essentially two 747 hulls mated together, making it the largest aircraft in the world – spanning 117 meters (385 ft) from one wingtip to the other and weighing 226,796 kg (500,000 lbs). It is powered by six Pratt & Whitney turbofan engines, giving it a maximum lift capacity of up to 249,476 kg (550,000 pounds). This would allow it to air-launch rockets that could deploy satellites to Low-Earth Orbit (LEO).
Captured new video of @Stratolaunch plane as it reached a top taxi speed of 40 knots (46 mph) with all flight surfaces in place on Sunday. The team verified control responses, building on the first taxi tests conducted in December. pic.twitter.com/OcH1ZkxZRA
As with other alternatives to rocket launches, the concept of an air-launch-to-orbit system is a time-honored one. During the early days of the Space Race, NASA relied on heavy aircraft to bring experimental aircraft to high altitudes (like the Bell X-1) where they would then be deployed. Since that time, NASA has partnered with companies like Orbital ATK and the Virgin Group to develop such a system to launch rockets.
However, the process is still somewhat limited when it comes to what kinds of payloads can be deployed. For instance, Orbital ATK’s three-stage Pegasus rocket is capable of deploying only small satellites weighing up to 454 kg (1,000 pounds) to Low-Earth Orbit (LEO). Looking to accommodating heavier payloads, which could include space planes, StratoLaunch has created the heaviest commercial airlift craft in history.
Back on May 31st, 2017, the aircraft was presented to the world for the first time as it was rolled out of the company’s hangar facility at the Mojave Air and Space Port in California. This presentation also marked the beginning of several tests, which including fueling tests, engine runs, and a series of taxi tests. The engine testing took place in September, 19th, 2017, and involved the aircraft starting it’s six Pratt & Whitney turbofan engines.
The testing followed a build-up approach that consisted of three phases. First, there was the “dry motor” phase, where an auxiliary power unit charged the engines. This was followed by the “wet motor” phase, where fuel was introduced to the engines. In the final phase, the engines were started one at a time and were allowed to idle.
This test was followed in December 18th, 2017, with the aircraft conducting its first low-speed taxi test, where it traveled down the runway under its own power. The primary purpose of this was to test the aircraft’s ability to steer and stop, and saw the aircraft reach a maximum taxing speed of 45 km/h (28 mph). This latest test almost doubled that taxing speed and brought the aircraft one step closer to flight.
The aircraft’s maiden flight is currently scheduled to take place in 2019. If successful, the Roc could be conducted regular satellite runs within a few years time, helping to fuel the commercialization of LEO. Alongside companies like SpaceX, Blue Origin, and the Virgin Group, StratoLaunch will be yet another company that is making space more accessible.
Stratolaunch Systems just conducted their first rollout of the Roc aircraft to begin fueling tests. Credit: Stratolaunch Systems
In 2011, Microsoft co-founder Paul G. Allen and Scaled Composites founder Burt Rutan announced the launch of their private space venture. Known as Stratolaunch Systems, this Seattle-based company was founded with the intention of developing air-launch-to-orbit systems. Similar to Virgin Galactic’s SpaceShipTwo, this concept involves a large air carrier flying rockets to launch altitude as cost-effective means of delivering small payloads to orbit.
On Thursday, May 31st, the company unveiled their launch vehicle, the Scaled Composites Model 351 (aka. the “Roc”). Consisting of two 747 hulls mated together, this aircraft is the the largest in the world – spanning 117 meters (385 ft) from one wingtip to the other and weighing 226,796 kg (500,000 lbs). This plane will make its first test flight in a few days time, and the company hopes to make its first commercial launch by 2019.
The rollout of the Roc – which took place at the company’s hangar facility at the Mojave Air and Space Port in California – was a media circus. In addition to being the first time that the public got to see the aircraft since construction began, the occasion marked the beginning of several tests which will take place over the coming days – including fueling tests, engine runs, taxi tests, and its first test flight.
Aerial view of the Roc aircraft, showing its massive 117 m (385 ft) wingspan. Credit: Stratolaunch Systems
“We’re excited to announce that Stratolaunch aircraft has reached a major milestone in its journey toward providing convenient, reliable, and routine access to low Earth orbit. Today, we’re moving the Stratolaunch aircraft out of the hangar – for the first time ever – to conduct aircraft fueling tests. This marks the completion of the initial aircraft construction phase and the beginning of the aircraft ground and flight testing phase.”
Measuring about 72.5 meters (238 ft) from nose to tail, the aircraft also stands 15.24 meters (50 ft) tall, measured from the ground to the top of the vertical tail. It has a maximum takeoff weight of 589,670 kg (1.3 million lbs), meaning that it is capable of airlifting payloads of up to 249,476 kg (550,000 lbs). These kinds of payloads mean that it will be capable of flying rockets and heavy space planes to launch altitude.
Last fall, the company announced their plan to conduct a launch using a single Orbital ATK Pegasus XL vehicle, a three-stage rocket used to deploy small satellites to Low-Earth Orbit (LEO). This agreement was part of a multi-year collaboration between the two companies, which would see the former combining their aircraft with the latter’s extensive air-launch experience.
Artist’s impression of the Roc aircraft, with a full loadout of three Pegasus rockets. Credit: Stratolaunch Systems
First unveiled in 1990, the Pegasus XL quickly established itself as a cost-effective means for launching small payloads to LEO. These typically would consist of small satellites weighing up to 443 kg (977 lbs) from beneath a NASA B-52 aircraft. Since then, the Pegasus has carried out 43 space launch missions and successfully placed a total of 94 satellites into orbit for various reasons – ranging from scientific research and communications to defense.
In time, the company plans to explore a wide range of launch vehicles that can provide flexibility in terms of missions and payloads. But in the meantime, they will be conducting ground and flight line testing from the Mojave Air and Space Port to ensure that Roc is capable of doing all it was designed for. If all goes well, they plan to make their first commercial launch by 2019.
“This marks a historic step in our work to achieve Paul G. Allen’s vision of normalizing access to low Earth orbit,” said Floyd. “It is proud day for us at Stratolaunch, for our partners at Scaled Composites, and for our founder Paul Allen. We have a lot of exciting activity ahead as we enter the testing process, and we look forward to sharing our progress during the coming months.”
One of the hallmarks of the commercial aerospace (aka. NewSpace) industry has been the development of cost-saving measures. Whereas companies like SpaceX and Blue Origin has looked to reusable rocket technology, other companies have sought to reduce costs with Single-Stage-to-Orbit (SSTO) rockets and plug-in payloads. Air-launch-to-orbit systems are just another way in which space is becoming more accessible.
And be sure to check out this video of the Roc’s unveiling:
NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)
The surviving co-pilot of the Virgin Galactic crash was unaware that SpaceShipTwo’s re-entry system was unlocked prematurely during the flight test, according to an update from the National Transportation Safety Board.
In an interview with investigators, the board said Peter Siebold provided testimony that was consistent with other information gathered so far since the crash. The incident, which killed fellow co-pilot Mike Alsbury when the craft plunged into the Mojave desert, took place Oct. 31.
“The NTSB operations and human performance investigators interviewed the surviving pilot on Friday. According to the pilot, he was unaware that the feather system had been unlocked early by the copilot,” read an update on the board’s website.
“His description of the vehicle motion was consistent with other data sources in the investigation. He stated that he was extracted from the vehicle as a result of the break-up sequence and unbuckled from his seat at some point before the parachute deployed automatically.”
Inset: Pilot Peter Siebold of Scaled Composites. Photo of SpaceShipTwo, SS Enterprise, in flight with its tail section in the feathered position for atmospheric re-entry. (Photo Credits: Scaled Composites)
Accidents are due to a complex set of circumstances, which means the NTSB finding that the re-entry system was deployed prematurely is only a preliminary finding. The investigation into the full circumstances surrounding the crash could take anywhere from months to a year, according to multiple media reports.
Virgin was performing another in a series of high-altitude test flights in preparation for running tourists up to suborbital space early next year. A handful of ticket-holders, who made deposits of up to $250,000 each, have reportedly asked for their money back. The Richard Branson-founded company has not revealed when the first commercial flight is expected to take place.
Meanwhile, Virgin does have another version of SpaceShipTwo already under assembly right now, which is considered 95% structurally complete and 60% assembled, according to NBC News. The prototype could take to the skies before the NTSB investigation is complete, the report added.