This is How NASA Releases Almost Half a Million Gallons of Water in 60 Seconds

The suppression system at Launch Pad 39B releases almost a half-million gallons of water to protect the SLS during launch. Image Credit: NASA/Kim Shiflett

As rockets become more and more powerful, the systems that protect them need to keep pace. NASA will use almost half a million gallons of water to keep the Space Launch System (SLS) safe and stable enough to launch successfully. The system that delivers all that water is called the Ignition Overpressure Protection and Sound Suppression (IOP/SS) water deluge system, and seeing it in action is very impressive.

Continue reading “This is How NASA Releases Almost Half a Million Gallons of Water in 60 Seconds”

Construction on the Orion Capsule is Done. Next it’ll be Sent to Florida for Final Assembly

In recent years, NASA has been busy developing the technology and components that will allow astronauts to return to the Moon and conduct the first crewed mission to Mars. These include the Space Launch System (SLS), which will be the most powerful rocket since the Saturn V (which brought the Apollo astronauts to the Moon), and the Orion Multi-Purpose Crew Vehicle (MPCV).

Continue reading “Construction on the Orion Capsule is Done. Next it’ll be Sent to Florida for Final Assembly”

Where Will the Space Launch System Take Us? Preparing For The Most Powerful Rocket Ever Built

Where Will the Space Launch System Take Us? Preparing For The Most Powerful Rocket Ever Built

NASA is in an awkward in-between time right now. Since the beginning of the space age, the agency has had the ability to send its astronauts into space. The first American to go to space, Alan Shepard, did a suborbital launch on board a Mercury Redstone rocket in 1961.

Then the rest of the Mercury astronauts went on Atlas rockets, and then the Gemini astronauts flew on various Titan rockets. NASA’s ability to hurl people and their equipment into space took a quantum leap with the enormous Saturn V rocket used in the Apollo program.

It’s difficult to properly comprehend just how powerful the Saturn V was, so I’ll give you some examples of things this monster could launch. A single Saturn V could blast 122,000 kilograms or 269,000 pounds into low-Earth orbit, or send 49,000 kilograms or 107,000 pounds on a transfer orbit to the Moon.

Instead of continuing on with the Saturn program, NASA decided to shift gears and build the mostly reusable space shuttle. Although it was shorter than the Saturn V, the space shuttle with its twin external solid rocket boosters could put 27,500 kilograms or 60,000 pounds into Low Earth orbit. Not too bad.

And then, in 2011, the space shuttle program wrapped up. And with it, the United States’ ability to launch humans into the space. And most importantly, to send astronauts to the continuously inhabited International Space Station. That task has fallen to Russian rockets until the US builds back the capability for human spaceflight.

Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA

Since the cancellation of the shuttle, NASA’s workforce of engineers and rocket scientists has been developing the next heavy lift vehicle in NASA’s line up: the Space Launch System.

The SLS looks like a cross between a Saturn V and the space shuttle. It has the same familiar solid rocket boosters, but instead of the space shuttle orbiter and its orange external fuel tank, the SLS has the central Core Stage. It has 4 of the space shuttle’s RS-25 Liquid Oxygen engines.

Although two shuttle orbiters were lost in disasters, these engines and their liquid oxygen and liquid hydrogen performed perfectly for 135 flights. NASA knows how to use them, and how to use them safely.

The very first configuration of the SLS, known as the Block 1, should have the ability to put about 70 metric tonnes into Low Earth Orbit. And that’s just the beginning, and it’s just an estimate. Over time, NASA will increase its capabilities and launch power to match more and more ambitious missions and destinations. With more launches, they’ll get a better sense of what this thing is capable of.

After the Block 1 is launching, NASA will develop the Block 1b, which puts a much larger upper stage on top of the same core stage. This upper stage will have a larger fairing and more powerful second stage engines, capable of putting 97.5 metric tonnes into low Earth orbit.

Graphic shows all the dome, barrel, ring and engine components used to assemble the five major structures of the core stage of NASA’s Space Launch System (SLS) in Block 1 configuration. Credits: NASA/MSFC

Finally, there’s the Block 2, with an even larger launch fairing, and more powerful upper stage. It should blast 143 tonnes into low Earth orbit. Probably. NASA is developing this version as a 130 tonne-class rocket.

With this much launch capacity, what could be done with it? What kinds of missions become possible on a rocket this powerful?

The main goal for SLS is to send humans out, beyond low Earth orbit. Ideally to Mars in the 2030s, but it could also go to asteroids, the Moon, whatever you like. And as you’ll read later on in this article, it could send some amazing scientific missions out there too.

The very first flight for SLS, called Exploration Mission 1, will be to put the new Orion crew module into a trajectory that takes it around the Moon. In a very similar flight to Apollo 8. But there won’t be any humans, just the unmanned Orion module and a bunch of cubesats coming along for the ride. Orion will spend about 3 weeks in space, including about 6 days in a retrograde orbit around the Moon.

NASA’s Orion spacecraft. Credit: NASA

If all goes well, the first use of the SLS with the Orion crew module will happen some time in 2019. But also, don’t be surprised if it gets pushed back, that’s the name of the game.

After Exploration Mission 1, there’s be EM-2, which should happen a few years after that. This’ll be the first time humans get into an Orion crew module and take a flight to space. They’ll spend 21 days in a lunar orbit, and deliver the first component of the future Deep Space Gateway, which will be the subject of a future article.

From there, the future is unclear, but SLS will provide the capability to put various habitats and space stations into cislunar space, opening up the future of human space exploration of the Solar System.

Now you know where SLS is probably headed. But the key to this hardware is that it gives NASA raw capability to put humans and robots into space. Not just here on Earth, but way across the Solar System. New space telescopes, robotic explorers, rovers, orbiters and even human habitats.

In a recent study called “The Space Launch System Capabilities for Beyond Earth Missions,” a team of engineers mapped out what the SLS should be capable of putting into the Solar System.

For example, Saturn is a difficult planet to reach, and it order to get there, NASA’s Cassini spacecraft needed to do several gravitational slingshots around Earth and one past Jupiter. It took almost 7 years to get to Saturn.

SLS could send missions to Saturn on more direct trajectory, cutting the flight time down to just 4 years. Block 1 could send 2.7 tonnes to Saturn, while Block 1b could loft 5.1 tonnes.

An artist’s interpretation of NASA’s Space Launch System Block 1 configuration with an Orion vehicle. Image: NASA

NASA is considering a mission to Jupiter’s Trojan asteroids. These are a collection of space rocks trapped in Jupiter’s L4/L5 Lagrange points, and could be a fascinating place to study. Once put into the Trojan region, a mission could visit several different asteroids, sampling a vast range of rocks that detail the Solar System’s early history.

The Block 1 could put almost 3.97 tonnes into these orbits, while the Block 1b could do 7.59 tonnes. That’s 6 times the capability of an Atlas V. A mission like this would have a cruise time of 10 years.

In a previous video, we talked about future Uranus and Neptune missions, and how a single SLS could send spacecraft to both planets simultaneously.

Another idea that I really like is an inflatable habitat from Bigelow Aerospace. The BA-2100 module would be a fully self-contained space habitat. No need for other modules, this monster would be 65 to 100 tonnes, and would go up in a single launch of SLS. Once inflated, it would contain 2,250 cubic meters, which is almost 3 times the total living space of the International Space Station.

One of the most exciting missions, to me, is a next generation space telescope. Something that would be the true spiritual successor to the Hubble Space Telescope. There are a few proposals in the works right now, but the idea I like best is the LUVOIR telescope, which would have a mirror that measures 16 meters across.

The SLS Block 1b could put 36.9 tonnes into Sun-Earth Lagrange Point 2. Really there’s nothing else out there that could put this much mass into that orbit.

Just for comparison, Hubble has a mirror of 2.4 meters across, and James Webb is 6.5. With LUVOIR, you would have 10 times more resolution than James Webb, and 300 times more power than Hubble. But like Hubble, it would be capable of seeing the Universe in visible and other wavelengths.

A telescope like this could directly image the event horizons of supermassive black holes, see right to the edge of the observable Universe and watch the first galaxies forming their first stars. It could directly observe planets orbiting other stars and help us determine if they have life on them.

An artist's illustration of a 16 meter segmented mirror space telescope. There are no actual images of LUVOIR because the design hasn't been finalized yet. Image: Northrop Grumman Aerospace Systems & NASA/STScI
An artist’s illustration of a 16 meter segmented mirror space telescope. There are no actual images of LUVOIR because the design hasn’t been finalized yet. Image: Northrop Grumman Aerospace Systems & NASA/STScI

Seriously, I want this telescope.

At this point, I know this is going to set off a big argument about NASA versus SpaceX versus other private launch providers. That’s fine, I get it. And the Falcon Heavy is expected to launch later this year, bringing heavy lift launch capabilities at an affordable price. It’ll be able to loft 54,000 kilograms, which is less than the SLS Block 1, and almost a third of the capability of the Block 2. Blue Origins has its New Glenn, there are heavier rockets in the works from United Launch Alliance, Arianespace, the Russian Space Agency, and even the Chinese. The future of heavy lift has never been more exciting.

If SpaceX does get the Interplanetary Transport Ship going, with 300 tonnes into orbit on a reusable rocket. Well then, everything changes. Everything.

Until then, I’m still looking forward to the SLS.

Weekly Space Hangout – February 17, 2017: Samuel Mason, Director of the Tesla Science Foundation

Host: Fraser Cain (@fcain)

Special Guest:
Samuel Mason is the Director of the Tesla Science Foundation, NJ Chapter. The mission of the Tesla Science Foundation is to establish and promote the recognition and awareness of Nikola Tesla’s inventions, patents, theories, philosophies, lectures, and innovations.
Guests:

Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )

Their stories this week:

Expert panel tells Congress NASA is underfunded for human space flight

Will NASA put a crew on the first SLS flight?

Fixing the Big Bang’s lithium problem

Home-grown organic materials found on Ceres

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page

NASA’s Orion EM-1 Crew Module Passes Critical Pressure Tests

Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett
Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Kim Shiflett

The next Orion crew module in line to launch to space on NASA’s Exploration Mission-1 (EM-1) has passed a critical series of proof pressure tests which confirm the effectiveness of the welds holding the spacecraft structure together.

Any leaks occurring in flight could threaten the astronauts lives.

Engineers and technicians conducted the pressure tests on the Orion EM-1 pressure vessel, which was welded together at NASA’s Michoud Assembly Facility in New Orleans and then shipped to NASA’s Kennedy Space Center in Florida just 3 months ago.

The pressure vessel is the structural backbone for the vehicles that will launch American astronauts to deep space destinations.

“This is the first mission where the Orion spacecraft will be integrated with the large Space Launch System rocket. Orion is the vehicle that’s going to take astronauts to deep space,” NASA Orion program manager Scott Wilson told Universe Today.

“The tests confirmed that the weld points of the underlying structure will contain and protect astronauts during the launch, in-space, re-entry and landing phases on the Exploration Mission 1 (EM-1), when the spacecraft performs its first uncrewed test flight atop the Space Launch System rocket,” according to a NASA statement.

After flying to KSC on Feb 1, 2016 inside NASA’s unique Super Guppy aircraft, this “new and improved” Orion EM-1 pressure vessel was moved to the Neil Armstrong Operations and Checkout (O&C) Building for final assembly by prime contractor Lockheed Martin into a flight worthy vehicle.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Since then, technicians have worked to meticulously attach hundreds of strain gauges to the interior and exterior surfaces of the vehicle to prepare for the pressure tests.

The strain gauges provide real time data to the analysts monitoring the changes during the pressurization.

Orion was moved to a test stand inside the proof pressure cell high bay and locked inside behind large doors.

Lockheed Martin engineers then incrementally increased the pressure in the proof testing cell in a series of steps over two days. They carefully monitored the results along the way and how the spacecraft reacted to the stresses induced by the pressure increases.

The maximum pressure reached was 1.25 times normal atmospheric pressure – which exceeds the maximum pressure it is expected to encounter on orbit.

“We are very pleased with the performance of the spacecraft during proof pressure testing,” said Scott Wilson, NASA manager of production operations for the Orion Program.

“The successful completion of this test represents another major step forward in our march toward completing the EM-1 spacecraft, and ultimately, our crewed missions to deep space.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

With the pressure testing satisfactorily completed, technicians will move Orion back to birdcage assembly stand for the “intricate work of attaching hundreds of brackets to the vessel’s exterior to hold the tubing for the vehicle’s hydraulics and other systems.”

To prepare for launch in 2018, engineers and technicians from NASA and prime contractor Lockheed Martin will spend the next two years meticulously installing all the systems amounting to over 100,000 components and gear required for flight.

This particular ‘Lunar Orion’ crew module is intended for blastoff to the Moon in 2018 on NASA’s Exploration Mission-1 (EM-1) atop the agency’s mammoth new Space Launch System (SLS) rocket, simultaneously under development. The pressurized crew module serves as the living quarters for the astronauts comprising up to four crew members.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

EM-1 itself is a ‘proving ground’ mission that will fly an unmanned Orion thousands of miles beyond the Moon, further than any human capable vehicle, and back to Earth, over the course of a three-week mission.

The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo.  Credit: Ken Kremer/kenkremer.com
NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo. Credit: Ken Kremer/kenkremer.com

NASA Completes Welding on Lunar Orion EM-1 Pressure Vessel Launching in 2018

Welding together of Orion EM-1 pressure vessel was completed on Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the primary structure of the Orion spacecraft destined for human missions to deep space and Mars.  Credits: NASA
Welding together of Orion EM-1 pressure vessel was completed on Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the primary structure of the Orion spacecraft destined for human missions to deep space and Mars. Credits: NASA

In a major step towards flight, engineers at NASA’s Michoud Assembly Facility in New Orleans have finished welding together the pressure vessel for the first Lunar Orion crew module that will blastoff in 2018 atop the agency’s Space Launch System (SLS) rocket.

This Orion is going to the Moon and back.

The 2018 launch of NASA’s Orion on an unpiloted flight dubbed Exploration Mission, or EM-1, counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago. Continue reading “NASA Completes Welding on Lunar Orion EM-1 Pressure Vessel Launching in 2018”

The Orion’s Heat Shield Gets a Scorching on Re-entry

Yes, she’s a little worse for wear, isn’t she? But then again, that’s what atmospheric re-entry and 2200 °Celsius (4000 °Fahrenheit) worth of heat will do to you! Such was the state of the heat shield that protected NASA’s Orion Spaceship after it re-entered the atmosphere on Dec. 5th, 2014. Having successfully protected the craft during it’s test flight, the shield was removed and transported to the Marshall Space Flight Center in Huntsville, Alabama, where it arrived on March. 9th.

Since that time, a steady stream of NASA employees have been coming by the facility to get a look at it while engineers collect data and work to repair it. In addition to being part of a mission that took human-rated equipment farther out into space than anything since the Apollo missions, the heat shield is also living proof that NASA is restoring indigenous space capability to the US.

First unveiled by NASA in May of 2011, the Orion Multi-Purpose Crew Vehicle (MPCV) was intrinsic to the Obama administration’s plan to send astronauts to a nearby asteroid by 2025 and going to Mars by the mid-2030’s. In addition to facilitating these long-range missions, the Orion spacecraft would also handle some of the routine tasks of spaceflight, such as providing a means of delivering and retrieving crew and supplies from the ISS.

NASA Orion spacecraft blasts off atop 1st  Space Launch System rocket in 2017 - attached to European provided service module – on an enhanced m mission to Deep Space where an asteroid could be relocated as early as 2021.   Credit: NASA
Artist’s concept of the Orion spacecraft being sent into orbit atop the first Space Launch System (SLS) rocket in 2017. Credit: NASA

The uncrewed test flight that took place on December 5, 2014, known as Exploration Flight Test 1 (EFT-1), was intended to test various Orion systems, including separation events, avionics, heat shielding, parachutes, and recovery operations prior to its debut launch aboard the Space Launch System,

This design of this mission corresponded to the Apollo 4 mission of 1967, which demonstrated the effectiveness of the Apollo flight control systems and the heat shields ability to withstand re-entry conditions, as part of the spacecraft’s return from lunar missions.

After being retrieved, the heat shield was transported by land to the Marshall Space Flight Center, where it was offloaded and transferred to a large support structure so engineers could perform studies on it for the next three months.

This will consist of collecting samples from the shield to measure their char layers and degree of erosion and ablation, as well as extracting the various instruments embedded in the heat shield to assess their performance during re-entry.

The heat shield arrived March 9 at Marshall, where experts from the Center and NASA’s Ames Research Center will extract samples of the ablative material, or Avcoat. Image Credit:  NASA/MSFC/Emmett Given
The heat shield arriving at Marshall on March 9th, where experts from the Center and NASA’s Ames Research Center. Credit: NASA/MSFC/Emmett Given

After the analysis is complete, technicians will load the shield into the 7-axis milling machine and machining center, where it will be grind down to remove the remaining material covering. Known as Avcoat, this heat-retardant substance is similar to what the Apollo missions used, with the exception of toxic materials like asbestos.

This material is used to fill the 320,000 honeycomb-like cells that make up the outer layer of the shield. When heated, the material burns away (aka. ablates) in order to prevent heat being transferred into the crew module. This shield is placed over the craft’s titanium skeleton and carbon-fiber skin, providing both protection and insulation for the interior.

Once all the Avcoat is removed and only the skeletal frame remains, it will be shipped to the Langley Research Center in Hampton, Virginia, for more tests. Since the Orion was returning from a greater distance in space than anything since Apollo, it experienced far greater heat levels than anything in recent decades, reaching as high as 2200 °C (4000 °F).

During Orion's test flight the heat shield reached temperatures of about 4,000 degrees Fahrenheit. Instrumentation in the heat shield measured the rise of the surface and internal temperatures during re-entry as well as heating levels and pressures. Image Credit:  NASA/MSFC/Emmett Given
Instrumentation in the Orion heat shield (visible here) measured the rise of the surface and internal temperatures during re-entry. Credit: NASA/MSFC/Emmett Given

Instrumentation in the shield measured the rise of the surface and internal temperatures during re-entry as well as the ablation rate of the shield’s coating. Over the next few months, NASA experts will be pouring over this data to see just how well the Orion shield held up under extreme heat. But so far, the results look positive – with only 20% of the Avcoat burning away on the test-flight re-entry.

In the future, the Orion spacecraft will be launched on Space Launch System on missions that will take it to nearby asteroids and eventually Mars. The first mission to carry astronauts is not expected to take place until 2021 at the earliest.

Further Reading: NASA

The Search for Alien Life Could Get A Boost From NASA’s Next-Generation Rocket

In three years, NASA is planning to light the fuse on a huge rocket designed to bring humans further out into the solar system.

We usually talk about SLS here in the context of the astronauts it will carry inside the Orion spacecraft, which will have its own test flight later in 2014. But today, NASA advertised a possible other use for the rocket: trying to find life beyond Earth.

At a symposium in Washington on the search for life, NASA associate administrator John Grunsfeld said SLS could serve two major functions: launching bigger telescopes, and sending a mission on an express route to Jupiter’s moon Europa.

The James Webb Space Telescope, with a mirror of 6.5 meters (21 feet), will in part search for exoplanets after its launch in 2018. Next-generation telescopes of 10 to 20 meters (33 to 66 feet) could pick out more, if SLS could bring them up into space.

“This will be a multi-generational search,” said Sara Seager, a planetary scientist and physicist at the Massachusetts Institute of Technology. She added that the big challenge is trying to distinguish a planet like Earth from the light of its parent star; the difference between the two is a magnitude of 10 billion. “Our Earth is actually extremely hard to find,” she said.

Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.
Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.

While the symposium was not talking much about life in the solar system, Europa is considered one of the top candidates due to the presence of a possible subsurface ocean beneath its ice. NASA is now seeking ideas for a mission to this moon, following news that water plumes were spotted spewing from the moon’s icy south pole. A mission to Europa would take seven years with the technology currently in NASA’s hands, but the SLS would be powerful enough to speed up the trip to only three years, Grunsfeld said.

And that’s not all that SLS could do. If it does bring astronauts deeper in space as NASA hopes it will, this opens up a range of destinations for them to go to. Usually NASA talks about this in terms of its human asteroid mission, an idea it has been working on and pitching for the past year to a skeptical, budget-conscious Congress.

But in passing, John Mather (NASA’s senior project scientist for Webb) said it’s possible astronauts could be sent to maintain the telescope. Webb is supposed to be parked in a Lagrange point (gravitationally stable location) in the exact opposite direction of the sun, almost a million miles away. It’s a big contrast to the Hubble Space Telescope, which was conveniently parked in low Earth orbit for astronauts to fix every so often with the space shuttle.

An Artist's Conception of the James Webb Space Telescope. Credit: ESA.
An Artist’s Conception of the James Webb Space Telescope. Credit: ESA.

While NASA works on the funding and design for larger telescope mirrors, Webb is one of the two new space telescopes it is focusing on in the search for life. Webb’s infrared eyes will be able to peer at solar systems being born, once it is launched in 2018. Complementary to that will be the Transiting Exoplanet Survey Satellite, which will fly in 2017 and examine planets that pass in front of their parent stars to find elements in their atmospheres.

The usual cautions apply when talking about this article: NASA is talking about several missions under development, and it is unclear yet what the success of SLS or any of these will be until they are battle-tested in space.

But what this discussion does show is the agency is trying to find many purposes for its next-generation rocket, and working to align it to astrophysics goals as well as its desire to send humans further out in the solar system.

1st Space-bound Orion Crew Capsule Unveiled at Kennedy

Image caption: Sen. Bill Nelson of Florida welcomes the newly arrived Orion crew capsule at a Kennedy Space Center unveiling ceremony on July 2, 2012 and proclaims Mars is NASA’s long term goal for human exploration. Credit: Ken Kremer

NASA’s first space-bound Orion crew capsule was officially unveiled at a welcoming ceremony at the Kennedy Space Center on Monday (July 2) to initiate a process that the agency hopes will finally put Americans back on a path to exciting destinations of exploration beyond low Earth orbit for the first time in 40 years since Apollo and spawn a new era in deep space exploration by humans – starting with an initial uncrewed test flight in 2014.

Over 450 invited guests and dignitaries attended the Orion arrival ceremony at Kennedy’s Operations and Checkout Building (O & C) to mark this watershed moment meant to reignite human exploration of the cosmos.

“This starts a new, exciting chapter in this nation’s great space exploration story,” said Lori Garver, NASA deputy administrator. “Today we are lifting our spirits to new heights.”

Image caption: Posing in front of NASA’s 1st Orion crew module set for 2014 liftoff are; KSC Director Bob Cabana, Mark Geyer, NASA Orion Program manager, Sen. Bill Nelson (FL), Lori Garver, NASA Deputy Administrator. Credit: Ken Kremer

This Orion capsule is due to lift off on a critical unmanned test flight in 2014 atop a powerful Delta 4 Heavy booster – like the Delta rocket just launched on June 29.

The bare bones, olive green colored aluminum alloy pressure shell arrived at KSC last week from NASA’s Michoud Assembly Facility where the vessel was assembled and the final welds to shape it into a capsule were just completed. Every space shuttle External Tank was built at Michoud in New Orleans.

U.S. Senator Bill Nelson of Florida has spearheaded the effort in Congress to give NASA the goal and the funding to build the Orion Multipurpose Crew Vehicle (MPCV) and the means to launch it atop the most powerful rocket ever built – a Saturn V class booster dubbed the SLS or Space Launch System – to destinations in deep space that have never been explored before.

“Isn’t this beautiful?” said Nelson as he stood in front of the incomplete vessel, motioned to the crowd and aimed his sights high. “I know there are a lot of people here who can’t wait to get their hands and their fingers on this hardware.

“And ladies and gentlemen, we’re going to Mars!” proclaimed Nelson.

“Without question, the long-term goal of our space program, human space program right now is the goal of going to Mars in the decade of the 2030s.”

“We still need to refine how we’re going to go there, we’ve got to develop a lot of technologies, we’ve got to figure out how and where we’re going to stop along the way. The president’s goal is an asteroid in 2025. But we know the Orion capsule is a critical part of the system that is going to take us there.”


Image caption: The green colored aluminum alloy pressure vessel arrived at KSC last week and will be outfitted with all the instrumentation required for spaceflight. Launch is slated for 2014 atop Delta 4 Heavy booster from pad 37 on Cape Canaveral. Crew hatch and tunnel visible at center. Credit: Ken Kremer

Orion is the most advanced spacecraft ever designed.

Over about the next 18 months, engineers and technicians at KSC will install all the systems and gear – such as avionics, instrumentation, flight computers and the heat shield – required to transform this empty shell into a functioning spacecraft.

The 2014 uncrewed flight, called Exploration Flight Test-1 or EFT-1, will be loaded with a wide variety of instruments to evaluate how the spacecraft behaves during launch, in space and then through the searing heat of reentry.

The 2 orbit flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station. Although the mission will only last a few hours it will be able high enough to send the vehicle plunging back into the atmosphere at over 20.000 MPH to test the craft and its heat shield at deep-space re-entry speeds approaching those of the Apollo moon landing missions.

Image caption: Sen. Bill Nelson of Florida discusses the new arrived Orion capsule with NASA Deputy Administrator Lori Garver while surrounded by a horde of reporters at the Kennedy Space Center unveiling ceremony on July 2, 2012. Credit: Ken Kremer

Orion arrived at Kennedy on nearly the same day that the center opened its door 50 years ago.

“As KSC celebrates its 50th anniversary this month, I can’t think of a more appropriate way to celebrate than by having the very first Orion Multi-Purpose Crew Vehicle here at KSC,” said KSC Center Director Robert Cabana, a former shuttle commander, at the O & C ceremony.

“The future is here, now, and the vehicle we see here today is not a Powerpoint chart. It’s a real spacecraft, moving toward a test flight in 2014.”

In 2017, an Orion capsule will lift off on the first SLS flight. The first crewed Orion will launch around 2021 and orbit the moon, Lori Garver told me in an interview at KSC.

But the entire schedule and construction of the hardware is fully dependent on funding from the federal government.

In these lean times, there is no guarantee of future funding and NASA’s budget has already been significantly chopped – forcing numerous delays and outright mission cancellations on many NASA projects; including the outright termination of NASA next Mars rover and multi-year delays to the commercial crew program and prior plans to launch a crewed Orion to orbit as early as 2013.

Image caption: Veteran NASA Astronaut Rex Walheim discusses Orion with Universe Today. Walheim flew on the last space shuttle mission (STS-135). Credit: Ken Kremer

Astronaut Rex Walheim, who flew on the final space shuttle mission (STS-135) and has had key role in developing Orion, said the Orion capsule can be the principal spacecraft for the next 30 years of human exploration of the solar system.

“It’s the first in a line of vehicles that can take us where we’ve never gone before,” Walheim said. “It’ll be a building block approach, we’ll have to have a lander and a habitation module, but we can get there.”


Image caption: John Karas, Lockheed Martin Vice President for Human Space Flight poses with Orion and discusses the upcoming 2014 EFT-1 test flight with Universe Today. Lockheed is the prime contractor for Orion. Credit: Ken Kremer

“Personally I am thrilled to be working on the next vehicle that will take us beyond low Earth orbit, said John Karas, Lockheed Martin Vice President for Human Space Flight. Lockheed Martin is the prime contractor to build Orion.

“Orion will carry humans to destinations never explored before and change human’s perspectives”

“Folks here are ready to start working on the EFT-1 mission. In about 18 months, EFT-1 will fly on the next Delta 4 Heavy flight.

“I can’t wait to go deeper into the cosmos!” Karas exclaimed.

Ken Kremer

…..
July 13/14: Free Public Lectures about NASA’s Mars and Planetary Exploration, the Space Shuttle, SpaceX , Orion and more by Ken Kremer at the Adirondack Public Observatory in Tupper Lake, NY.

All Together Now!

[/caption]

That’s a lot of power under one roof! For the first time in… well, ever… all fifteen Space Shuttle Main Engines (SSMEs) are together inside NASA’s Engine Shop at Kennedy Space Center. They will be prepped for shipment to Stennis Space Center in Mississippi where they’ll become part of the propulsion used on NASA’s next generation heavy-lift rocket: the Space Launch System.

The engines, built by Pratt & Whitney Rocketdyne, are each 14 feet (4.2 meters) long & 7.5 feet (2.3 meters) in diameter at the end of its nozzle, and weighs approximately 7,000 lbs (3175 kg).

Photo from a test firing of an SSME at the Stennis Space Center in 1981. Credit: NASA.

Each engine is capable of generating a force of nearly 400,000 pounds (lbf) of thrust at liftoff, and consumes 350 gallons (1,340 liters) of fuel per second. They are engineered to burn liquid hydrogen and liquid oxygen, creating exhaust composed primarily of water vapor.

The engines will be incorporated into the Space Launch System (SLS), which is designed to carry the Orion Multi-Purpose Crew Vehicle – also currently in development – as well as serve as backup for commercial and international transportation to the ISS. By utilizing current technology and adapting it for future needs, NASA will be able to make the next leap in human spaceflight and space exploration – while getting the most “bang” out of the taxpayers’ bucks.

“NASA has been making steady progress toward realizing the president’s goal of deep space exploration, while doing so in a more affordable way. We have been driving down the costs on the Space Launch System and Orion contracts by adopting new ways of doing business and project hundreds of millions of dollars of savings each year.” 

–  NASA Deputy Administrator Lori Garver

Nine of the 15 SSMEs await shipment inside NASA's Engine Shop. Each weighs approximately 7,000 lbs. Credit: NASA.

While it’s sad to see these amazing machines removed from the shuttles, it’s good to know that they still have plenty of life left in them and will soon once again be able to take people into orbit and beyond!

Read more about the Space Launch System here.