Rare Images From Inside a Soyuz During Flight

Astronaut Cady Coleman and cosmonaut Dmitry Kondratyev inside the living area of the Soyuz TMA-20. Credit: Roscosmos.

[/caption]

Cosmonaut Dmitry Kondratyev recently arrived at the International Space Station, along with astronauts Cady Colemand from the US and Paolo Nespoli from the European Space Agency. Kondratyev has a blog, which he has been updating regularly and he has included several pictures. Most interestingly, he has quite a few images taken inside the Soyuz after launch as the crew was on their way to meet up with the ISS. Very few interior images of the Soyuz during flight have been made available before. Below are some that Kondratyev shared.


Dmitry Kondratyev inside the Soyzu either before or during launch. Credit: Roscosmos

Still feeling the effects of gravity, Kondratyev looks buried among all the supplies stuffed into the Soyuz.

The weightlessness from being orbit seems to provide more room inside the Soyuz. Credit: Roscosmos.
Coleman and a checklist feel the effects of weightlessness. Credit: Roscosmos.
After reaching orbit and checking all systems, the crew took off their launch suits and dressed in more comfortable flight suits. Credit: Roscosmos.
Coleman and Nespoli stretch out in the Soyuz living area and grab a bite to eat. Credit: Roscosmos
The view of Earth from the Soyuz TMA-20. Credit: Roscosmos.
Kondratyev and Coleman inside the Soyuz living area. Credit: Roscosmos

Kondratyev wrote in his blog: “For two days we had two hours of relaxation for sleep. Sleeping crew members are able to choose any convenient location and arbitrary orientation in space. At other times, we learned to eat in weightlessness, Earth watched and talked with TsUPom, check the efficiency of vehicle systems.”

Sleeping arrangements on the Soyuz. Credit: Roscosmos.

See more images and read about life on the ISS at Kondratyev’s blog.

Source: Roscosmos, via Chris Hadfield

More Images, Details on SpaceX’s Dragon Flight

The Dragon spacecraft, in excellent condition after its 50,000 mile mission, rests in its cradle for the 500 mile ride back to Los Angeles.

[/caption]

SpaceX has released more images and more details about the successful flight of Falcon 9 and the Dragon capsule that took place on December 8, making SpaceX the first commercial company in history to re-enter a spacecraft from Earth orbit. Here’s an image of Dragon safely on board a ship after splashdown. SpaceX said Dragon orbited the Earth at speeds greater than 7,600 meters per second (17,000 miles per hour), reentered the Earth’s atmosphere, and landed less than one mile from the center of the targeted landing zone in the Pacific Ocean. Wow, that’s some pretty good precision. See more images and details of the flight below.

The above image also shows a look at Dragon’s PICA-X heat shield, which SpaceX says is highly advanced. They worked closely with NASA to develop the heat shield, a variant of NASA’s Phenolic Impregnated Carbon Ablator (PICA) heat shield, which NASA used for the Stardust sample capsule returned, which set the record for the fastest reentry speed of a spacecraft into Earth’s atmosphere — experiencing speeds of 46,510 kph (28,900 mph).

NASA made its expertise and specialized facilities available to SpaceX as the company designed, developed and qualified the 3.6 meter PICA-X shield in less than 4 years at a fraction of the cost NASA had budgeted for the effort. The result is the most advanced heat shield ever to fly. SpaceX said one heat shield can potentially be used hundreds of times for Earth orbit reentry with only minor degradation each time, and that this flight proved it. During the press conference following the successful flight of Dragon, SpaceX CEO Elon Musk said this heat shield could even withstand the much higher heat of a moon or Mars velocity reentry.

The Falcon 9 launch vehicle carrying the Dragon spacecraft, climbing from the launch pad. Credit: SpaceX/Chris Thompson

SpaceX said all nine Merlin engines performed “nominally,” which means they worked wonderfully. Together, the rocket engines generate one million pounds of thrust in vacuum, getting the entire stack off the ground and powering the first phase of flight. The rocket reached maximum dynamic pressure (the point at which aerodynamic stress on a spacecraft in atmospheric flight is maximized, also known as Max Q) approximately 1.5 minutes after launch. The first stage separation occurred a little over three minutes into flight.

After stage separation, flames are barely visible around nozzle as the second stage engine ignites and the first stage falls back to the Earth below. Credit: SpaceX

The single Merlin Vacuum engine of Falcon 9’s second stage then ignited to continue carrying the vehicle towards its targeted orbit. After stage separation, the nose cap at the front of the Dragon spacecraft safely jettisoned. The second stage fired for another four and a half minutes, until it achieved orbital velocity, and then the Dragon spacecraft separated from the second stage to begin its independent flight.

High contrast view of the Dragon spacecraft (circle at center) viewed from the top of the second stage as it departs over the curved horizon of the Earth. The rectangles indicate locations of three of the nano satellite deploying P-PODs carried on this mission. Credit: SpaceX

SpaceX said Dragon’s first-ever on-orbit performance was 100% successful in meeting test objectives including maintaining attitude, thermal control, and communication activities. While in orbit, eight free-flying payloads were successfully deployed, including a U.S. Army nanosatellite—the first Army-built satellite to fly in 50 years.

After separation of the Dragon spacecraft, the second stage Merlin engine restarted, carrying the second stage to an altitude of 11,000 km (6,800 mi). While restart of the second stage engine was not a requirement for this mission (or any future missions to the ISS), it is important for future Geosynchronous Transfer Orbit (GTO) missions, where SpaceX hopes to bring satellites for paying customers.

View from orbit from the side window of the Dragon spacecraft, received via video as it passed over Hawaii during its first orbit. Credit: SpaceX

What’s the view like from inside Dragon? Here’s a view looking out Dragon’s porthole, with a view of Hawaii. After the second stage separated, there was an expected loss of signal as the Dragon spacecraft passed over the horizon as viewed from the launch site. At that point, SpaceX activated Dragon’s video signal from a camera set up inside the capsule, delivering the first ever video sent from Dragon on orbit.

The SpaceX crew brought Dragon back to the barge where the crane lifted it from the water. Credit: SpaceX/Mike Althofen

For this first flight under the Commercial Orbital Transportation Services (COTS) program, everything went perfectly, with a nominal flight profile that included a roughly 9.5-minute ascent, two Earth-orbits, reentry and splashdown. Falcon 9 delivered Dragon to orbit with an inclination of 34.53 degrees—a near bull’s-eye insertion, according to SpaceX.

Now, on to the next demonstration flight, which will go to the International Space Station, and maybe even dock, if SpaceX has anything to say about it.


See our previous gallery of images and videos from the launch.

Source: SpaceX

Secret X-37B Mini Space Shuttle Lands

U.S. Air Force X-37B reusable space plane. Credit: Boeing, US Air Force.

The X-37B mini space shuttle made a stealth landing during the early morning hours, landing at Vandenberg Air Force base at 1:16 a.m. PDT (0916 GMT) today (Friday, Dec. 3.) The US Air Force’s first unmanned space plane successfully glided to a landing after nearly 225 days in space.

X-37B program manager Lt Col Troy Giese stated moments after landing, “We are very pleased that the program completed all the on-orbit objectives for the first mission.”

Above is an infrared camera view of the space plane taxiing after landing this morning.

The space plane’s exact mission was not divulged, and the Air Force did not immediately report anything about the performance of the spacecraft or if any issues arose.

The X-37B’s mission is to “demonstrate a reliable, reusable, unmanned space test platform for the United States Air Force,” according to a fact sheet put out by the military. “Objectives of the OTV program include space experimentation, risk reduction and concept of operations development for reusable space vehicle technologies.”

[/caption]

Source: Space Launch News

Secret Mini Space Shuttle Could Land on Friday

The X-37B spaceplane sits on a runway at Vandenberg Air Force Base during prelaunch taxi tests. Credit: U.S. Air Force

[/caption]

The US Air Force announced that the X-37B Orbital Test Vehicle, a miniature, unmanned space shuttle could return to Earth as soon as this Friday, December 3. It has been in Earth orbit for about nine months on a classified mission for the military. It will land at Vandenberg Air Force Base in Los Angeles sometime between Friday and Monday, Air Force officials said in a statement. The exact time of touchdown will depend on weather conditions and technical factors.

Preparations for the landing began on Tuesday, the Air Force Space Command said. The backup landing site would be Edwards Air Force Base.

The X-37B launched from Cape Canaveral, Florida on April 22. It was built by Boeing, and the vehicle looks like a space shuttle orbiter, but is much smaller: at 9 meters long and 4.5 meter wide (29 X 15 ft), with a payload bay that is 2.1 by 1.2 meters (7 by 4 feet) the X-37B is about 1/4th the size of a shuttle.

Launch of the X37-B. Credit: Alan Walters (awaltersphoto.com) for Universe Today

The X-37B uses solar arrays and lithium ion batteries to generate power instead of fuel cells like the space shuttle, a major reason why it can stay on orbit for much longer.

Originally the vehicle was scheduled for launch in from the payload bay of the Space Shuttle, but that plan was axed following the Columbia accident.

The X-37B’s mission is to “demonstrate a reliable, reusable, unmanned space test platform for the United States Air Force,” according to a fact sheet put out by the military. “Objectives of the OTV program include space experimentation, risk reduction and concept of operations development for reusable space vehicle technologies.”

It will be interesting to see if the military will share any of the on-orbit activities of the space plane and what capabilities and uses this vehicle might have in the future.

See our previous article “What is the Air Force’s Secret X-37B Space Plane Doing in Orbit?” for more information.

Source: Air Force Space Command

Soyuz and 3 ISS Crewmembers Return Home

The Expedition 25 crew landed safely in Kazakhstan at 11:46 p.m. EST Thursday (Friday 10:46 a.m. Kazakhstan time). The trio — Doug Wheelock, Shannon Walker and Soyuz Commander Fyodor Yurchikhin — undocked in the Soyuz TMA-19 at 8:23 p.m. ending their 5-1/2 month stay at the International Space Station. Staying behind on the orbiting laboratory are Expedition 26 Commander Scott Kelly and Flight Engineers Alexander Kaleri and Oleg Skripochka.
Continue reading “Soyuz and 3 ISS Crewmembers Return Home”

The Cutest Little Spaceship that Never Flew

A close-up view of the X-38 under the wing of NASA's B-52 mothership prior to a test launch of the vehicle. Credit: NASA

[/caption]

Of all the missions and spacecraft that NASA has shelved over the years, I found the X-38 Crew Return Vehicle (CRV) to personally be one of the most disappointing. While its cancellation resulted in no loss of science and never stranded any astronauts in space, my disappointment was from strictly an aesthetic point of view: this was the cutest little spacecraft I had ever seen. The X-38 was a prototype for a wingless lifting body reentry vehicle that was to be used as a crew return and/or rescue vehicle for the International Space Station, but it was canceled in 2002 due to budget cuts. I guess cuteness doesn’t get you far in the space biz.

The image above shows a test flight in 1999 where the the X-38 research vehicle was dropped from a B-52 airplane. Three different designs of the X-38 made flight tests, and the vehicle landed by using one of the biggest aerofoil parachutes ever made. The CRV was designed to fly automatically from orbit to landing using onboard navigation and flight control systems, but backup systems also would have allowed the crew to pick a landing site and steer the parafoil to a landing, if necessary. The X-38’s landed on skids, not wheels, reminiscent of the famed X-15 lifting body research aircraft.

The X-38 was developed at NASA’s Dryden Flight Research Center at Edwards Air Force Base in California, and atmospheric test vehicles were actually built by Scaled Composites – the very same company that later built SpaceShipOne and won the X PRIZE.

The X-38 drops from a B-52 aircraft. Credit: NASA

The X-38 looks like a mini-space shuttle, and would have fit into the payload bay of the full-size space shuttles.

X-38 weighed 10,660 kg and was 9.1 meters long. The battery system, lasting nine hours, was to be used for power and life support. If the crew from the ISS had to make an emergency return to Earth, it would only take two to three hours for the CRV to reach Earth.

One of the prototypes can now be seen at the Strategic Air and Space Museum in Ashland Nebraska, located just off Interstate 80, about 20 miles southeast of Omaha.

For more info about the X-38, see this NASA webpage.

Stubborn Shuttle Discovery Refuses to Launch on Final Mission

Shuttle Discovery still on the launchpad. Credit: Alan Walters (awaltersphoto.com) for Universe Today.

[/caption]

UPDATE: The launch has now been delayed until Nov. 30, as a crack was found in the foam on Discovery’s external tank after the fuel was offloaded this morning. Engineers posting on Twitter said the hydrogen leak this morning may have been a lucky break, as the crack had ice underneath and may have easily come off during launch. The crack was not seen previously.

It seems as through space shuttle Discovery keeps coming up with excuses to delay the launch of her final mission to space, and the launch pad facilities and weather are conspiring along with her. Originally scheduled to launch on Nov. 1, this latest delay comes from a hydrogen leak in a vent arm attached to the shuttle’s external tank. The work required will push back any further launch attempt until at least Monday, Nov. 8. That is the last day available in the current launch window, and if it doesn’t launch then the window closes until Nov. 30, due to unfavorable sun angles for when the shuttle would be docked to ISS.

This is not the first time a leak has occurred in the vent arm, but this time the leak was “substantial” said Launch Director Mike Leinbach.

“The signature of the leak is similar to what we’ve seen in the past when we’ve had leaks there, although the magnitude was higher this time and it occurred earlier in our tanking process,” he said.

Discovery’s 11-day mission to the International Space Station will bring a new storage module and the first humanoid robot, Robonaut 2, or R2 to the station. The Nov. 8 launch time is now scheduled for 12:53 Eastern STANDARD Time (17:53 UT).

Previous delays have stemmed from leaks in different systems, an electrical glitch and rainy, windy weather.

The launch scrubs have disappointed participants of the launch Tweet-up, where NASA allows Twitterers a chance to view a launch from Kennedy Space Center. While some of the participants are waiting out the delays, most have had to return home. This marks the first time there has been a launch delay when NASA has held a Tweet-up for a shuttle liftoff.

If you are needing to see a launch, try keeping an eye on a Delta II rocket launch from Vandenberg Air Force Base in California, with the COSMO Earth observing satellite. This rocket, too has had its share of delays, but is now slated for launch on Friday, Nov. 5 at 10:20 pm EDT (7:20 pm PDT).

NASA’s Year of Finales Continues with Last ET and SRB Events

One of NASA's recovery ships, Freedom Star, escorts the Pegasus Barge with the final External Tank of the shuttle program into Cape Canaveral. Photo Credit: Universe Today/Alan Walters

[/caption]

As the space shuttle program draws to a close, NASA is working to highlight the historic nature of each of the events. On Tuesday, Sept. 28th, the last External Tank of the shuttle program wheeled out of the Pegasus Barge – early. Storm clouds had been swirling around the Kennedy Space Center (KSC) in the early morning hours, pushing the rollout time up.

Weather also conspired to delay the departure of the final Solid Rocket Booster (SRB) segment from the Assembly Refurbishment Facility (ARF). After a brief ceremony that included Kennedy Space Center Director Robert Cabana and Astronauts Chris Hadfield and Gregory C. Johnson it was announced that the final SRB segment would wait in the ARF for a couple more days until the weather system passed. The moment seemed to highlight some of the emotions that those that have worked on the SRBs are currently feeling.

Canadian astronaut Chris Hadfield and U.S. astronaut Greg johnson spoke at Tuesday's ceremonies. Photo Credit: Universe Today/Alan Walters

“It’s bittersweet; you know I’ve worked with the people here for the last twenty-years,” said David Beaman the manager for the Reusable Solid Rocket Booster Project, Shuttle Office. “It’s exciting to know that we’ve almost completed the mission, to know that we’re getting ready for the last couple shuttle flights.”

The External Tank traveled from NASA’s Michoud Facility located in Louisiana to NASA’s Kennedy Space Center across the Gulf of Mexico. The trip takes about 5 days and some 900 miles. The Pegasus reached the turn basin near the massive Vehicle Assembly Building (VAB) the day prior. The day was viewed as one of reflection for those that have worked to see that the tanks arrive safely at KSC.

Workers assemble in front of the final Solid Rocket Booster segment of the shuttle program. Photo Credit: Universe Today/Alan Walters

“It’s a sentimental day, almost nostalgic, who knows what the future brings, but at least for the shuttle program this is the last,” said KSC’s External Tank and Solid Rocket Booster Manager, Alicia Mendoza. “We are excited to have the tank, we all had our adrenaline flowing, but at the same time it is sad because it is the last tank.”

While a final determination as to whether or not there will be a third mission added to the two currently scheduled, all signs indicated that this mission will be added. Currently this mission is designated STS-335 and would be a “Launch On Need” (LON) rescue mission for the final scheduled flight of space shuttle Endeavour, STS-134. If and when this mission is given the go-ahead the crew would consist of Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Rex Walheim and Sandra Magnus. The crew would convert from training as a rescue mission to a resupply mission for the space station.

The last External Tank of the shuttle program, ET-122, rests safely in the Vehicle Assembly Building. Photo Credit: Universe Today/Alan Walters

It was Robert Cabana, Kennedy Space Center’s Director that highlighted the importance of the work that was done on both the SRBs and ETs over the past three decades.

Speaking next to the final SRB segment of the shuttle era, Kennedy Space Center Director Robert Cabana highlights the program's 30 years of accomplishments. Photo Credit: Jason Rhian

“I just want to say thank you for your hard work and dedication, thank you for thirty years supporting space shuttle operations,” said Cabana, a four-time shuttle astronaut, speaking at Tuesday’s ceremonies. “Thank you for supporting an amazing vehicle that made the assembly of the space station that’s on orbit possible, that put the Hubble Space Telescope up there; that put all the probes out there in space that has done all the things that would not have been possible without the space shuttle.”

Fleet of Solar Sail Spacecraft Envisioned for Future Data Gathering Missions

Artist concept of data clippers in space. Credit: Thales Alenia Space

[/caption]

Future missions to explore the outer planets could employ fleets of ‘data-clippers’, maneuverable spacecraft equipped with solar sails, to ship vast quantities of scientific data back to Earth. According to Joel Poncy of satellite developer Thales Alenia Space, the technology could be ready in time to support upcoming missions to the moons of Jupiter and Saturn.

“Space-rated flash memories will soon be able to store the huge quantities of data needed for the global mapping of planetary bodies in high resolution.” said Poncy. “But a full high-res map of, say, Europa or Titan, would take several decades to download from a traditional orbiter, even using very large antennae. Downloading data is the major design driver for interplanetary missions. We think that data clippers would be a very efficient way of overcoming this bottleneck.”

Poncy and his team have carried out a preliminary assessment for a data clipper mission. Their concept is for a clipper to fly close to a planetary orbiter, upload its data and fly by Earth, at which point terabytes of data could be downloaded to the ground station. A fleet of data clippers cruising around the Solar System could provide support for an entire suite of planetary missions.

“We have looked at the challenges of a data clipper mission and we think that it could be ready for a launch in the late 2020s. This means that the technology should be included now in the roadmap for future missions,” said Poncy.

Spurred by the success of the Japanese Space Agency’s current solar sail mission, IKAROS, Poncy’s team have assessed the communications systems and tracking devices that a data clipper would need, as well as the flyby conditions and pointing accuracy required for the massive data transfers. Recent advances in technology mean that spacecraft propelled by solar sails, which use radiation pressure from photons emitted by the Sun, or electric sails, which harness the momentum of the solar wind, can now be envisaged for mid-term missions.

“Using the Sun as a propulsion source has the considerable advantage of requiring no propellant on board. As long as the hardware doesn’t age too much and the spacecraft is maneuverable, the duration of the mission can be very long. The use of data clippers could lead to a valuable downsizing of exploration missions and lower ground operation costs – combined with a huge science return. The orbiting spacecraft would still download some samples of their data directly to Earth to enable real-time discoveries and interactive mission operations. But the bulk of the data is less urgent and is often processed by scientists much later. Data clippers could provide an economy delivery service from the outer Solar System, over and over again,” said Poncy.

Poncy will be presenting an assessment of data clippers at the European Planetary Science Congress in Rome on Monday September, 20, 2010.

Source: European Planetary Science Congress

NASA Considering Rail Gun Launch System to the Stars

Different technologies to push a spacecraft down a long rail have been tested in several settings, including this Magnetic Levitation (MagLev) System evaluated at NASA's Marshall Space Flight Center. Engineers have a number of options to choose from as their designs progress. Photo credit: NASA

[/caption]

The idea for using rail guns to launch objects to space has been around for years – even Isaac Newton considered the concept. But now a group of NASA engineers is seriously studying the possibility of using a rail gun as a potential launch system to the stars, and they are looking for a system that turns a host of existing cutting-edge technologies into the next giant leap spaceward. Stan Starr, branch chief of the Applied Physics Laboratory at Kennedy Space Center said that nothing in the design calls for brand-new technology to be developed, but counts on a number of existing technologies to be pushed forward. He said developing such a system would be a “major technology revolution.”

“All of these are technology components that have already been developed or studied,” he said. “We’re just proposing to mature these technologies to a useful level, well past the level they’ve already been taken.”

A rail gun utilizes a magnetic field powered by electricity to accelerate a projectile along a set of rails, similar to train rails. One early proposal from the NASA group calls for a wedge-shaped aircraft with scramjets to be launched horizontally on an electrified track or gas-powered sled. The aircraft would fly up to Mach 10, using the scramjets and wings to lift it to the upper reaches of the atmosphere where a small payload canister or capsule similar to a rocket’s second stage would fire off the back of the aircraft and into orbit. The aircraft would come back and land on a runway by the launch site.

The engineers, from KSC and other NASA centers, contend the system, with its advanced technologies, will benefit the nation’s high-tech industry by perfecting technologies that would make more efficient commuter rail systems, better batteries for cars and trucks, and numerous other spinoffs.

Different technologies to push a spacecraft down a long rail have been tested in several settings, including this Magnetic Levitation (MagLev) System evaluated at NASA's Marshall Space Flight Center. Engineers have a number of options to choose from as their designs progress. Photo credit: NASA

For example, electric tracks catapult rollercoaster riders daily at theme parks. But those tracks call for speeds of a relatively modest 100 km/h (60 mph) — enough to make the ride exciting, but not nearly fast enough to launch something into space. The launcher would need to reach at least 10 times that speed over the course of two miles in Starr’s proposal.

The good news is that NASA and universities already have done significant research in the field, including small-scale tracks at NASA’s Marshall Space Flight Center in Huntsville, Ala., and at Kennedy. The Navy also has designed a similar catapult system for its aircraft carriers.

As far as the aircraft that would launch on the rail, there already are real-world tests for designers to draw on. The X-43A, or Hyper-X program, and X-51 have shown that scramjets will work and can achieve remarkable speeds.

The group sees NASA’s field centers taking on their traditional roles to develop the Advanced Space Launch System. For instance, Langley Research Center in Virginia, Glenn Research Center in Ohio and Ames Research Center in California would work on different elements of the hypersonic aircraft. Dryden Research Center in California, Goddard Space Flight Center in Maryland and Marshall would join Kennedy in developing the launch rail network. Kennedy also would build a launch test bed, potentially in a two-mile long area parallel to the crawlerway leading to Launch Pad 39A.

Because the system calls for a large role in aeronautic advancement along with rocketry, Starr said, “essentially you bring together parts of NASA that aren’t usually brought together. I still see Kennedy’s core role as a launch and landing facility.”

The Advanced Space Launch System is not meant to replace the space shuttle or other program in the near future, but could be adapted to carry astronauts after unmanned missions rack up successes, Starr said.

The studies and development program could also be used as a basis for a commercial launch program if a company decides to take advantage of the basic research NASA performs along the way. Starr said NASA’s fundamental research has long spurred aerospace industry advancement, a trend that the advanced space launch system could continue.

For now, the team proposed a 10-year plan that would start with launching a drone like those the Air Force uses. More advanced models would follow until they are ready to build one that can launch a small satellite into orbit.

A rail launcher study using gas propulsion already is under way, but the team is applying for funding under several areas, including NASA’s push for technology innovation, but the engineers know it may not come to pass. The effort is worth it, however, since there is a chance at revolutionizing launches.

Source: NASA