Starlink Satellites Are Still Bright

Starlink
An artist's conception of the Starlink constellation encircling the Earth. Credit: SpaceX

The new generation of Starlink satellites remain above the accepted brightness threshold.

It’s one of the stranger sights of the modern Space Age. Recently, we found ourselves under the relatively dark skies of southern Spain. Sure enough, within a few minutes, we caught sight of a chain of flashing ‘stars’ winking in and out of view in quick succession.

Continue reading “Starlink Satellites Are Still Bright”

What Are You Doing For Yuri’s Night?

What are you doing for Yuri's Night? Credit: yurisnight.net

On April 12th, 1961, history was made when the first human being – Russian cosmonaut Yuri Gagarin – went into space. Similarly, on April 12th, 1981, the inaugural launch of the Space Shuttle took place. In recognition of these accomplishments, people from all around the world have been celebrating “Yuri’s Night” – a global festival honoring humanity’s past, present, and future in space – for over a decade and a half.

This year will mark the 56th anniversary of Yuri Gagarin’s historic flight and of human spaceflight in general. As with every Yuri’s Night that has happened since 2001, this year’s festivities will feature educational events, presentations and games (along with general revelry) at venues located all across the world. Do you have any plans for Yuri’s Night 2017? And if not, perhaps you would like to know what’s happening?

Plenty of events have been planned for this year that are sure to appeal to science enthusiasts and those with a passion for space exploration. One of the highlights for 2017 is a chance to enjoy a virtual reality space vacation, which comes courtesy of the fun folks at Guerilla Science – a London and New York-based group that specializing in creating educational events and installations for festivals, museums, galleries, etc.

Screen shot from Guerilla Science’s “space vacation” VR app. Click to see the animation. Credit: guerillascience.org

For the sake of this year’s Yuri’s night, they are offering people a chance to experience a VR application that allows people to experience a trip to Mars’ Mariner Valley, or to take a self-guided tour on the Moon using the clicker to navigate. To learn more about this application (which is also available for beta testing), be sure to check out Guerilla Science’s “Intergalactic Travel Bureau“. As they describe the bureau’s purpose on their website:

“The Intergalactic Travel Bureau is a live, interactive experience that explores the incredible possibilities of space tourism through personalized space vacation planning experiences. It’s a little bit like Virgin Galactic and SpaceX meet the Jetsons and Mad Men. Bringing together space scientists, astronomers, science educators, actors and the general public, the Bureau has popped up all over the UK and the US since 2011.”

In addition, a virtual event is being hosted by Spacelog, a volunteer organization dedicated to sharing mission transcripts and photographs that celebrate the history of space exploration. In commemoration of Gagarin’s historic flight, they will be publishing the transcripts of the Vostok 1 mission on their Facebook page. Like the mission itself, the event will start at 4:10 am UTC and conclude at 07:55 UTC on Wednesday, April 12th.

For those interested, the Yuri’s Night Global Team (led by Veronica Ann Zabala-Aliberto) is still seeking Regional Team Leaders to help provide support, coordination, and resources for the hundreds of Yuri’s Night parties that have been planned. In addition to organizers and outreach personnel, the Global Team is also seeking translators who are fluent in Arabic and Turkish. To check out what positions are available, go to their website.

Statue of Yuri Gagarin, the first man in space, at the Baikonur Cosmodrome. Credit: AFP

So far, a total of 127 events have been registered in 38 countries, and on 7 continents. That’s right, an event has even been planned for Antarctica, specifically in Loung B3 at the South Pole Station (located at the geographic South Pole). So if you’re in the area – for whatever reason, possibly doing field studies on Emperor Penguins or something! – be sure to swing by!

To find an event in your neck of the woods, consult the full list here. And if you are interested in hosting one, you can register at the Yuri’s Night website. The website is also looking for donations to keep their volunteer and community efforts going.

Wherever you happen to land on April 12th, be sure to raise a glass to all those who have risked life and limb over the past fifty-plus years to establish humanity as a space-faring species!

Further Reading: Yuri’s Night

What was Sputnik One?

Sputnik 1
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity's first artificial satellite. Credit: NASA/Asif A. Siddiqi

Today, people take it for granted that they live in a world that isn’t threatened with imminent nuclear annihilation. A little more than half a century ago, that was the kind of world people lived in, where the United States and Soviet Union were locked in a constant game of one-upmanship that revolved around the development of nuclear weapons.

At the same time, this competition extended to include sports, politics, and the race to reach space. And on October 4th, 1957, the Russians were the first to accomplish this goal with the launch of Sputnik-1, an unmanned research and communications satellite whose appearance ignited the “Space Race” and forever altered the course of history.

Background:

During the early 1950s, the Russians had conducted extensive orbital research using rockets. However, these efforts were limited by the fact that conventional rockets could only achieve orbit for a maximum of a few minutes before falling back to Earth. The next step seemed obvious: placing a research satellite into space that could maintain its orbit and therefore conduct scientific research for an extended period of time.

A "Semyorka" rocket, part of the Soviet R7 rocket family. Credit: Wikipedia Commons/Sergei Arssenev
Sputnik 1 was launched aboard a “Semyorka” rocket, part of the Soviet R7 rocket family. Credit: Wikipedia Commons/Sergei Arssenev

Beginning in March of 1954, Russia’s three top scientists – Mstislav Keldysh, Sergei Korolev and Mikhail Tikhonravov – began discussing the idea of creating an artificial satellite that could be placed into orbit. According to Tikhonravov, such a move would be the next necessary step in the development of rocket technology.

Their efforts received a boost when, on July 29th, 1955, U.S. President Dwight D. Eisinhower announced the US’ intent to launch an artificial satellite during the International Geophysical Year (IGY) – an international scientific project that lasted from July 1st, 1957, to December 31st, 1958.

Because of this, the Soviet Politburo approved of the plans for an artificial satellites and aimed for a launch date that would take place before the beginning of the IGY. The project was approve and the task of creating it was divided between various ministries and the USSR Academy of Sciences.

Keldysh was given control of a commission to oversee develop the “automatic laboratory” aboard the satellite, Tikhonravov and his team of engineers would be responsible for designing the satellite, and Korolev – as head of the Ministry of Defense Industry’s primary design bureau (OKB-1) – would be responsible for building it.

The Sputnik spacecraft stunned the world when it was launched into orbit on Oct. 4th, 1954. Credit: NASA
The Sputnik spacecraft stunned the world when it was launched into orbit on Oct. 4th, 1954. Credit: NASA

Design and Construction:

Initially, the Soviet plan for an satellite (known as Object D) was planned to be completed in 1957–58, and called for the creation of a spacecraft that would have a mass of 1,000 – 1,400 kg (2,200 – 3,100 lb) and would carry 200 – 300 kg (440 – 660 lb) of scientific instruments.

In terms of tasks, the mission would seek to measure the density of the atmosphere and its ion composition, solar wind, the Earth’s magnetic field, and cosmic rays (largely for the sake of future missions). A system of ground stations was also called for in order to collect data transmitted from the satellite, as well as observe its orbit and transmit commands.

By the end of 1956, it had become clear that the specifications called for were too ambitious to be accomplished within the established time frame. Fearing the US would launch a satellite before the USSR, Korolev and the OKB-1 suggested that a simpler, lighter satellite could be launched in April-May 1957, before the IGY began.

This satellite would weight about 100 kg (220 lbs) and would forgo heavy scientific instruments in favor of a simple radio transmitter. On February 15th, 1957, the Council of Ministers of the USSR approved this simple satellite, designated “Prosteyshiy Sputnik” – Russian for “Simplest Satellite” – (aka. Object PS), and made arrangements to launch two versions (PS-1 and PS-2) using R-7 rockets.

Exploded view of the Sputnik 1 satellite. Credit: NASA
Exploded view of the Sputnik 1 satellite. Credit: NASA

 

Launch and Mission:

On October 4th, at 19:28:34 hours Greenwich Mean Time, Sputnik-1 was launched into space from the Baikonur Cosmodrome. The satellite orbited the Earth for three months and emitting radio signals which were monitored by amateur radio operators throughout the world. The signals continued for 22 days until the transmitter batteries ran out on October 26th, 1957.

Before finally burning up during reentry on January 4th, 1958, the satellite traveled a total of about 60 million km (37.28 million mi) and completed 1,440 orbits around the Earth. Sputnik-1 also helped to identify the density of the atmosphere’s upper layer, provided data on radio-signal distribution in the ionosphere, and allowed for the first opportunity for meteoroid detection.

Impact:

Apart from its value as a technological first, Sputnik also had the effect of expediting both Soviet and American efforts to explore space. News of the launch triggered a great deal of fear in the United States, as many worried that Sputnik could represent a threat to national security, not to mention America’s technological leadership.

As a result, Congress urged then-President Dwight D. Eisenhower to take immediate action, which resulted in the signing of the National Aeronautics and Space Act on July 29th, 1958, officially establishing NASA. Immediately, NASA became dedicated to researching hypersonic flight and taking the necessary steps towards creating crewed spacecraft.

Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti
Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti

The Soviets did the same, taking drastic steps towards the creation of rockets and crew capsules as part of the Vostok Program. This would culminate in the first man being launched into orbit space – cosmonaut Yuri Gagarin – on April 12th, 1961. The pace of this competition would continue until July 20th, 1969, when the US made the historic first of landing astronauts on the Moon.

Decades later, Sputnik-1 is still viewed as a groundbreaking achievement. Despite its diminutive size and simplicity, its launch was a major breakthrough for the Soviets, and caused no shortage of fear and consternation in the west. In many ways, we are lucky to be living in an age where cooperation has taken the place of competition. Today, such breakthroughs are the result of a world coming together, and not enmity between nations.

We have written many articles about the satellites and Space Age here at Universe Today. Here’s Who was the First Dog to go into Space?, Who was the First Monkey to go into Space?, Who was the first Man to go into Space?, Who was the First Woman to go into Space? and Who Are The Most Famous Astronauts?

If you’d like more information on the Sputnik mission, here’s a link to NASA’s Solar System Exploration Guide on Sputnik, and here’s the homepage for NASA History: Sputnik.

We’ve recorded an episode of Astronomy Cast all about the History of Astronomy. Listen here, Episode 187: History of Astronomy, Part 5: The 20th Century.

Sources:

How Do We Terraform The Moon?

Artist's concept of a terraformed moon. According to a new study, the Moon may have had periods of habitability in its past where it had an atmosphere and liquid water on its surface. Credit: Ittiz

Welcome back to our ongoing series, “The Definitive Guide To Terraforming”! We continue with a look at the Moon, discussing how it could one day be made suitable for human habitation.

Ever since the beginning of the Space Age, scientists and futurists have explored the idea of transforming other worlds to meet human needs. Known as terraforming, this process calls for the use of environmental engineering techniques to alter a planet or moon’s temperature, atmosphere, topography or ecology (or all of the above) in order to make it more “Earth-like”. As Earth’s closest celestial body, the Moon has long been considered a potential site.

All told, colonizing and/or terraforming the Moon would be comparatively easy compared to other bodies. Due to its proximity, the time it would take to transport people and equipment to and from the surface would be significantly reduced, as would the costs of doing so. In addition, it’s proximity means that extracted resources and products manufactured on the Moon could be shuttled to Earth in much less time, and a tourist industry would also be feasible.

Continue reading “How Do We Terraform The Moon?”

What Is The Space Age?

A picture of Earth taken by Apollo 11 astronauts. Credit: NASA

With the end of World War II, the Allies and the Soviet Bloc found themselves locked in a state of anatgonism. As they poured over the remains of the Nazi war machine, they discovered incredible advances in rocketry and aerospace engineering, and began scrambling to procure all they could.

For many of the many decades that followed, this state would continue as both sides struggled to make advancements in the field of space exploration ahead of the other. This was what is popularly known as the “Space Age”, an era that was born of the advent of nuclear power, advances in rocketry, and the desire to be the first to put men into space and on the Moon.

Continue reading “What Is The Space Age?”

Infographic Shows The Quick-Changing Satellites Of The Early Space Age

Excerpt from the infographic "An Early History of Satellites." Credit: Broadband Wherever.

It’s not often that one associates a satellite with French folk songs, but this infographic does that and more. Below you will find the major launches of the early space age — from the Soviet Union’s Sputnik to the Czechoslovakian Magion 1 — showing how satellites quickly evolved between 1957 and 1978.

In two decades, satellites changed from simple transmitters and receivers to sophisticated machines that carried television signals and science instruments.

Another striking thing about this Broadband Wherever graphic: the number of participating countries. While we often think of the early Space Age as being dominated by the United States and Soviet Union, you can see other nations quickly rushing their own satellites into orbit: Canada, Italy, Australia, India and more.

Enjoy the sound bites and cute graphics below. Full sources for the information are listed at the bottom of the infographic.

Early History of Satellites

How Many Miles Around the Earth?

Planet Earth, as seen from Apollo 17 mission. Credit: NASA/)PL

Planet Earth, which we humans and all currently-known forms of life call home, is the third planet from the Sun, and the largest of the terrestrial planets. With a mean radius of 6,371 km (3,958.8 miles), it is slightly larger than Venus (which has a radius of approx. 6,050 km), almost twice the size of Mars (~3,390 km), and almost three times the size of Mercury (~2,440 km).

Basically, Earth is a pretty big world. But just how big if one were to measure it from end to end? If one were to just start walking, how many kilometers (and/or miles) would they have to go before they got back to where they started. Well, the short answer is just over 40,075 km (or just over 24,901 miles). But as always, things get a little more complicated when you look closer.

Continue reading “How Many Miles Around the Earth?”