The Apus Constellation

Welcome back to Constellation Friday! Today, we will be dealing with the beautiful bird-of-paradise itself, the Apus constellation!

The Southern Hemisphere is replete with beautiful stars and constellations, enough to keep a stargazing enthusiast busy for a lifetime. For countless centuries, the indigenous peoples of South America, South Africa, Australia and the South Pacific have looked up at these stars and drawn inspiration. However, to European astronomers, they remained uncharted and unknown until the 16th century.

It was during this time that Flemish astronomer Petrus Plancius designated twelve constellations, using asterisms found in the southern skies. One such constellation was Apus, a faint constellation in the southern sky that is named for the bird-of-paradise – a beautiful bird that is indigenous to the South Pacific. Today, it is one of the 88 constellations defined by the International Astronomic Union (IAU).

Name and Meaning:

The name Apus is derived from Greek word apous, which literally means “no feet”. The name applies to a species of bird that is indigenous to Indonesia, Papua New Guinea, and Eastern Australia (which was believed at one time to have no feet). Its original name on Plancius’ charts was “Apis Indica” – the Latin term for “Indian Bee” (presumably an error for “avis”, which means bird).

Because of this error, the bordering constellation of Musca was later separated and renamed. The neighboring constellations to Apus are Ara, Chamaeleon, Circinus, Musca, Octans, Pavo, and Triangulum Australe.

The Constellation Apus. Credit:
The Constellation Apus. Credit:

History of Observation:

This faint southern constellation of Apus was one of the original twelve created by Plancius, based on observations provided by Pieter Dirkszoon Keyser and Frederick de Houtman – two Dutch explorers/navigators who mapped the southern sky around Australia between 1595 and 1597.

It was included on a celestial globe published in 1597 or 1598 in Amsterdam by Plancius and his associate, Flemish cartographer and engraver Jodocus Hondius. After it’s introduction on Plancius’ globe, it also appeared in Uranometria, a star atlas published by Johann Bayer – a German celestial catrographer – in 1603.

Here, it appeared under the name “Apis Indica”. It also grouped with the other members of the “Johann Bayer family” of constellations, all of which appeared in Uranometria. These include Chamaeleon, Dorado, Grus, Hydrus, Indus, Musca, Pavo, Phoenix, Tucana, and Volans. The constellation also appears as part of the Chinese constellations, where it is known as the “Little Wonder Bird”.

In the 17th century, Ming Dynasty astronomer Xu Guangqi adapted the European southern hemisphere constellations when producing The Southern Asterisms. Combining Apus with some of the stars in Octans, he designated the stars in this area of the night sky into the constellation known as Yìquè (“Exotic Bird”). In 1922, Apus was included by the International Astronomical Union in the list of 88 constellations.

The southern constellation Apus and neighboring Deep Sky Objects. Credit:
The southern constellation Apus and neighboring Deep Sky Objects. Credit:

Notable Features:

Within the Apus constellation, there are 39 stars that are brighter than or equal to apparent magnitude 6.5. The most notable of these is Alpha Apodis. an orange giant star with a magnitude of 3.8, located roughly 411 light years away from Earth. Beta Apodis is also an orange giant, with a magnitude of 4.2. and located 158 light years from Earth. And Gamma Apodis , another orange giant, has a magnitude of 3.9 and is located 160 light years away.

Delta Apodis is a binary star system consisting of a red giant and an orange giant. Delta¹ has a magnitude of 4.7 and is located 765 light years away, while Delta² has a magnitude of 5.3 and is located 663 light years away. Then there is Theta Apodis, a variable red giant star with a maximum magnitude of 4.8 and a minimum of 6.1 that is located 328 light years away.

NO Apodis is a red giant that varies between magnitudes 5.71 and 5.95 and is located around 883 light-years away from Earth. This star shines with a luminosity that is approximately 2059 times greater than our Sun’s and has a surface temperature of 3568 K.

Apus is also home to a few Deep Sky Objects. These include the IC 4499 loose globular cluster (shown below), which is located in the medium-far galactic halo and has an apparent magnitude of 10.6. This object is rather unique in that its metallicity readings indicate that it is younger than most other globular clusters in the region.

This new NASA/ESA Hubble Space Telescope image shows the globular cluster IC 4499. Globular clusters are big balls of old stars that orbit around their host galaxy. It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster's age. For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times. One of the driving forces behind this behaviour is thought to be gravity: more massive globulars manage to grab more gas and dust, which can then be transformed into new stars. IC 4499 is a somewhat special case. Its mass lies somewhere between low-mass globulars, which show a single generation build-up, and the more complex and massive globulars which can contain more than one generation of stars. By studying objects like IC 4499 astronomers can therefore explore how mass affects a cluster's contents. Astronomers found no sign of multiple generations of stars in IC 4499 — supporting the idea that less massive clusters in general only consist of a single stellar generation. Hubble observations of IC 4499 have also helped to pinpoint the cluster's age: observations of this cluster from the 1990s suggested a puzzlingly young age when compared to other globular clusters within the Milky Way. However, since those first estimates new Hubble data been obtained, and it has been found to be much more likely that IC 4499 is actually roughly the same age as other Milky Way clusters at approximately 12 billion years old. Credit: ESA/NASA/HST
NASA/ESA Hubble Space Telescope image of the globular cluster IC 4499, located in the Apus constellation. Credit: ESA/NASA/HST

Then there’s NGC 6101, a 14th mangitude globular cluster located seven degree north of Gamma Apodis. Last, there is the spiral galaxy IC 4633, which is very faint due to its location well within the Milky Way’s nebulous disc.

Finding Apus:

For binoculars, take a look at Alpha Apodis. This 3.8 magnitude star is located 411 light years away from Earth. Now move on to Delta. It is a wide double star which is two orange 5th-magnitude members separated by 103 arc seconds and an easy split. Or try observing Theta – its a variable star whose brightness ranges from magnitude 4.8 to 6.1 in a period of 109 days.

For telescopes, take a look at more difficult binary star Kappa-1 Apodis. The brightest component of this disparate pair has a magnitude of 5.4 and the companion is 12th magnitude, 27 arcseconds away. Need more? Then turn your gaze towards Kappa-2 only 0.63 degrees from Kappa-1. Kappa-1 Apodis is a binary star approximately 1020 light years from Earth. The primary component, Kappa-1 Apodis A, is a blue-white B-type subgiant with a mean apparent magnitude of +5.40. It is classified as a Gamma Cassiopeiae type variable star and its brightness varies from magnitude +5.43 to +5.61. The companion star, Kappa-1 Apodis B, is a 12th magnitude orange K-type subgiant. It is 27 arc seconds from the primary.

For larger telescopes, wander off and look at NGC 6101 located about seven degrees north of Gamma. Here we have a small, 14th magnitude globular cluster! If you’re really good you can try for spiral galaxy IC 4633. It’s so faint it doesn’t even have a magnitude listing!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?, Triangulum Australe, What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations. and the Students for the Exploration and Development of Space page on Apus and Constellation Families.

What Causes Day and Night?

For most of here on planet Earth, sunrise, sunset, and the cycle of day and night (aka. the diurnal cycle) are just simple facts of life. As a result of seasonal changes that happen with every passing year, the length of day and night can vary – and be either longer or shorter – by just a few hours. But in some regions of the world (i.e. the poles) the Sun does not set during certain times of the year. And there are also seasonal periods where a single night can last many days.

Naturally, this gives rise to certain questions. Namely, what causes the cycle of day and night, and why don’t all places on the planet experience the same patterns? As with many other seasonal experiences, the answer has to do with two facts: One, the Earth rotates on its axis as it orbits the Sun. And two, the fact that Earth’s axis is tilted.

Earth’s Rotation:

Earth’s rotation occurs from west to east, which is why the Sun always appears to be rising on the eastern horizon and setting on the western. If you could view the Earth from above, looking down at the northern polar region, the planet would appear to be rotating counter-clockwise. However, viewed from the southern polar region, it appears to be rotating clockwise.

Earth's axial tilt (or obliquity) and its relation to the rotation axis and plane of orbit as viewed from the Sun during the Northward equinox. Credit: NASA
Earth’s axial tilt and its relation to the rotation axis and plane of orbit as viewed from the Sun during the Northward equinox. Credit: NASA

The Earth rotates once in about 24 hours with respect to the Sun and once every 23 hours 56 minutes and 4 seconds with respect to the stars.  What’s more, its central axis is aligned with two stars. The northern axis points outward to Polaris, hence why it is called “the North Star”, while its southern axis points to Sigma Octantis.

Axial Tilt:

As already noted, due to the Earth’s axial tilt (or obliquity), day and night are not evenly divided. If the Earth’s axis were perpendicular to its orbital plane around the Sun, all places on Earth would experience equal amounts of day and night (i.e. 12 hours of day and night, respectively) every day during the year and there would be no seasonal variability.

Instead, at any given time of the year, one hemisphere is pointed slightly more towards the Sun, leaving the other pointed away. During this time, one hemisphere will be experiencing warmer temperatures and longer days while the other will experience colder temperatures and longer nights.

Seasonal Changes:

Of course, since the Earth is rotating around the Sun and not just on its axis, this process is reversed during the course of a year. Every six months, the Earth undergoes a half orbit and changes positions to the other side of the Sun, allowing the other hemisphere to experience longer days and warmer temperatures.

Precession of the Equinoxes. Image credit: NASA
Artist’s rendition of the Earth’s rotation and the precession of the Equinoxes. Credit: NASA

Consequently, in extreme places like the North and South pole, daylight or nighttime can last for days. Those times of the year when the northern and southern hemispheres experience their longest days and nights are called solstices, which occur twice a year for the northern and southern hemispheres.

The Summer Solstice takes place between June 20th and 22nd in the northern hemisphere and between December 20th and 23rd each year in the southern hemisphere. The Winter Solstice occurs at the same time but in reverse – between Dec. 20th and 23rd for the northern hemisphere and June 20th and 22nd for the southern hemisphere.

According to NOAA, around the Winter Solstice at the North Pole there will be no sunlight or even twilight beginning in early October, and the darkness lasts until the beginning of dawn in early March. Conversely, around the Summer Solstice, the North Pole stays in full sunlight all day long throughout the entire summer (unless there are clouds). After the Summer Solstice, the sun starts to sink towards the horizon.

Another common feature in the cycle of day and night is the visibility of the Moon, the stars, and other celestial bodies. Technically, we don’t always see the Moon at night. On certain days, when the Moon is well-positioned between the Earth and the Sun, it is visible during the daytime. However, the stars and other planets of our Solar System are only visible at night after the Sun has fully set.

Astrophoto: Night Sky by Sam Crimmin
“Night Sky”. On a clear night, the stars and the glowing band of the Milky Way Galaxy are generally visible. Credit: Sam Crimmin

The reason for this is because the light of these objects is too faint to be seen during daylight hours. The Sun, being the closest star to us and the most radiant object visible from Earth, naturally obscures them when it is overhead. However, with the Earth tilted away from the Sun, we are able to see the Moon radiating the Sun’s light more clearly, and the stars light is detectable.

On an especially clear night, and assuming light pollution is not a major factor, the glowing band of the Milky Way and other clouds of dust and gas may also be visible in the night sky. These objects are more distant than the stars in our vicinity of the Galaxy, and therefore have less luminosity and are more difficult to see.

Another interesting thing about the cycle of day and night is that it is getting slower with time. This is due to the tidal effects the Moon has on Earth’s rotation, which is making days longer (but only marginally). According to atomic clocks around the world, the modern day is about 1.7 milliseconds longer than it was a century ago – a change which may require the addition of more leap seconds in the future.

We have many interesting articles on Earth’s Rotation here at Universe Today. To learn more about solstices here in Universe Today, be sure to check out our articles on the Shortest Day of the Year and the Summer Solstice.

More information can be found at NASA, Seasons of the Year, The Sun at Solstice

Check out this podcast at Astronomy Cast: The Life of the Sun

Bottoms Up! It’s a Year of Lunar Libration From Down Under

Do you live in the southern hemisphere? Are you tired of all those views of the Moon that favor celestial north as up? Well here’s a video just for you from the good folks at the GSFC Scientific Visualization Center — it shows the full 2013 year of lunar phases and libration as seen from Earth’s southern half using data gathered by NASA’s Lunar Reconnaissance Orbiter. (Because what’s so great about north, anyway?)

Each frame represents one hour. Side graphs indicate the Moon’s orbit position, sub-Earth and subsolar points, and distance from the Earth at true scale. Awesome! Um, I mean… bonzer!

And what’s up with all that wobbling around? Find out more below:

The Moon always keeps the same face to us, but not exactly the same face. Because of the tilt and shape of its orbit, we see the Moon from slightly different angles over the course of a month. When a month is compressed into 24 seconds, as it is in this animation, our changing view of the Moon makes it look like it’s wobbling. This wobble is called libration.

The word comes from the Latin for “balance scale” and refers to the way such a scale tips up and down on alternating sides.

The Moon is subject to other motions as well. It appears to roll back and forth around the sub-Earth point (the location on the Moon’s surface where the Earth appears directly overhead, at the zenith.) The roll angle is given by the position angle of the axis, which is the angle of the Moon’s north pole relative to celestial north. The Moon also approaches and recedes from us, appearing to grow and shrink. The two extremes, called perigee (near) and apogee (far), differ by more than 10%.

Read more and see the current phase of the Moon (bottom up) on the GSFC Dial-a-Moon page here.

Source: NASA Goddard Space Flight Center Scientific Visualization Studio

An Amazing Deep-Field View of Centaurus A

Sometimes, you just have to say “Wow!”

The view you’re looking at above is of Centaurus A (NGC 5128), a galaxy about 10-16 million light years distant in the southern hemisphere sky. It’s a favorite of astrophotographers and professional observatories alike.

But what makes this image so special is that it was taken by an amateur astrophotographer.

To construct this amazing image, New Zealand-based astrophotographer Rolf Wahl Olsen exposed the field of view for 120 hours over 43 nights spanning February to May of this year.

Rolf recently shared his motivation to construct this image;

“Over the past few months I have been on a mission to achieve a long time dream of mine: taking a deep sky image with more than 100 hours of exposure.”

Rolf also noted that the stars in the frame are visible down to magnitude +25.45, which “appears to go deeper than the recent ESO release” and believes that it may well be “the deepest view ever obtained of Centaurus A,” As well as “the deepest image ever taken with amateur equipment.”

Not only is the beauty and splendor of the galaxy revealed in this stunning mosaic, but you can see the variations in the populations of stars in the massive regions undergoing an outburst of star formation.

One can also see the numerous globular clusters flocking around the galaxy, as well as the optical counterparts to the radio lobes and the faint trace of the relativistic jets. The extended halo of the outer shell of stars is also visible, along with numerous foreground stars visible in the star rich region of Centaurus.

Finally, we see the dusty lane bisecting the core of this massive galaxy as seen from our Earthly vantage point.

To our knowledge, many of these features have never been captured visually by backyard observers before, much less imaged. Congrats to Rolf Wahl Olsen on a spectacular capture and sharing his view of the universe with us!

Read more on the Centaurus A deep field on Google+.

-Check out the comparison images of the Centaurus A deep field showing the relativistic jet (!) background galaxies and clusters.

-Explore more of Rolf’s outstanding work at his website.


GOES-8 Satellite Image Captures Earth


An equator is an imaginary line that runs around the surface of a planet, perpendicular to the sphere’s axis of rotation. Of course, the one we’re most interested in is the Earth’s equator. Regions north of the equator are called the Northern Hemisphere, and then south of the equator is the Southern Hemisphere.

Here on Earth, the equator has a length of 40,008.6 kilometers, and its latitude is 0°. And if you can stand on the equator, you’ll see the Sun rise in the East and travel overhead through the day, and then set in the West; on the March and September equinox, the rays from the Sun fall straight down. This is also the spot with the quickest sunrise and sunset times, since the Sun moves exactly perpendicular to the horizon, rising straight up, without moving at an angle to the horizon.

Because the Earth is rotating, turning once a day on its axis, the Earth’s equator bulges out further from the center than from the poles. The Earth isn’t a sphere, but it’s actually an oblate spheroid. The equatorial diameter of the Earth is actually 43 kilometers greater than the polar diameter.

Since it’s the region of Earth that receives the most sunlight, the climate near the equator is hot – it’s summer all the time. People who live near the equator will generally distinguish between a long hot dry season and a long hot wet season. Some of the countries with the equator include Gabon, Congo, Uganda, Kenya, Somalia, Indonesia, Ecuador, Columbia, and Brazil.

The equator is the best place to launch a spacecraft on Earth. That’s because the rotational speed of the planet adds to the launch velocity of a rocket. Rockets launched from the equator can launch with less fuel, or carry more mass into orbit with the same amount of fuel. This is why the Guiana Space Centre is located in Kourou, French Guiana. And this is also why the Sea Launch platform travels from Los Angeles down to the equator before launching rockets.

We have written many articles about the Equator for Universe Today. Here’s an article about the temperature of the Earth, and here’s an article about the circumference of the Earth.

If you’d like more info on Equator, check out NASA’s Article about Latitude and Longitude. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Source: Wikipedia