X-Rays Are Coming From The Dark Side of Venus

On June 5th, 2012, the NASA/JAXA Hinode mission captured these stunning views of the transit of Venus. Credit: JAXA/NASA/Lockheed Martin

Venus and Mercury have been observed transiting the Sun many times over the past few centuries. When these planets are seen passing between the Sun and the Earth, opportunities exist for some great viewing, not to mention serious research. And whereas Mercury makes transits with greater frequency (three times since 2000), a transit of Venus is something of a rare treat.

In June of 2012, Venus made its most recent transit – an event which will not happen again until 2117. Luckily, during this latest event, scientists made some very interesting observations which revealed X-ray and ultraviolet emissions coming from the dark side of Venus. This finding could tell us much about Venus’ magnetic environment, and also help in the study of exoplanets as well.

For the sake of their study (titled “X-raying the Dark Side of Venus“) the team of scientists – led by Masoud Afshari of the University of Palermo and the National Institute of Astrophysics (INAF) – examined data obtained by the x-ray telescope aboard the Hinode (Solar-B) mission, which had been used to observe the Sun and Venus during the 2012 transit.

Artist's impression of the Hinode (Solar-B) spacecraft in orbit. Credit: NASA/GSFC/C. Meaney
Artist’s impression of the Hinode (Solar-B) spacecraft in orbit. Credit: NASA/GSFC/C. Meaney

In a previous study, scientists from the University of Palermo used this data to get truly accurate estimates of Venus’ diameter in the X-ray band. What they observed was that in the visible, UV, and soft X-ray bands, Venus’ optical radius (taking into account its atmosphere) was 80 km larger than its solid body radius. But when observing it in the extreme ultraviolet (EUV) and soft X-ray band, the radius increased by another 70 km.

To determine the cause of this, Afshari and his team combined updated information from Hinode’s x-ray telescope with data obtained by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO). From this, they concluded that the EUV and X-ray emissions were not the result of a fault within the telescope, and were in fact coming from the dark side of Venus itself.

They also compared the data to observations made by the Chandra X-ray Observatory of Venus in 2001 and again in 2006-7m which showed similar emissions coming from the sunlit side of Venus. In all cases, it seemed clear that Venus had unexplained source of non-visible light coming from its atmosphere, a phenomena which could not be chalked up to scattering caused by the instruments themselves.

Comparing all these observations, the team came up with an interesting conclusion. As they state in their study:

“The effect we are observing could be due to scattering or re-emission occurring in the shadow or wake of Venus. One possibility is due to the very long magnetotail of Venus, ablated by the solar wind and known to reach Earth’s orbit… The emission we observe would be the reemitted radiation integrated along the magnetotail.”

On June 5-6 2012, NASA's Solar Dynamics Observatory, or SDO, collected images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA
Collected images of Venus 2012 transit of the Sun, taken in June of 2012 by NASA’s Solar Dynamics Observatory (SDO). Credit: NASA/SDO, AIA

In other words, they postulate that the radiation observed emanating from Venus could be due to solar radiation interacting with Venus’ magnetic field and being scattered along its tail. This would explain why from various studies, the radiation appeared to be coming from Venus’ itself, thus extending and adding optical thickness to its atmosphere.

If true, this finding would not only help us to learn more about Venus’ magnetic environment and assist our exploration of the planet, it would also improve our understanding of exoplanets. For example, many Jupiter-sized planets have been observed orbiting close to their suns (i.e. “Hot Jupiters“). By studying their tails, astronomers may come to learn much about these planets’ magnetic fields (and whether or not they have one).

Afshari and his colleagues hope to conduct future studies to learn more about this phenomenon. And as more exoplanet-hunting missions (like TESS and the James Webb Telescope) get underway, these newfound observations of Venus will likely be put to good use – determining the magnetic environment of distant planets.

Further Reading: The Astronomical Journal

Black Hole Bonanza! Dozens (Potentially) Found In Andromeda As Another Study Probes X-Rays

A new analysis of data from the Chandra space telescope revealed 26 black hole candidates in the Andromeda Galaxy. This is the largest collection of possible black holes found in another galaxy besides that of the Milky Way, Earth's home galaxy. Credit: X-ray (NASA/CXC/SAO/R.Barnard, Z.Lee et al.), Optical (NOAO/AURA/NSF/REU Prog./B.Schoening, V.Harvey; Descubre Fndn./CAHA/OAUV/DSA/V.Peris)

More than two DOZEN potential black holes have been found in the nearest galaxy to our own. As if that find wasn’t enough, another research group is teaching us why extremely high-energy X-rays are present in black holes.

The Andromeda Galaxy (M31) is home to 26 newly found black hole candidates that were produced from the collapse of stars that are five to 10 times as massive as the sun.

Using 13 years of observations from NASA’s Chandra X-Ray Observatory, a research team pinpointed the locations. They also corroborated the information with X-ray spectra (distribution of X-rays with energy) from the European Space Agency’s XMM-Newton X-ray observatory.

“When it comes to finding black holes in the central region of a galaxy, it is indeed the case where bigger is better,” stated co-author Stephen Murray, an astronomer at Johns Hopkins University and the Harvard-Smithsonian Center for Astrophysics.

A close-up of the candidate black holes in Andromeda, as seen by the Chandra X-Ray Observatory. Credit: X-ray (NASA/CXC/SAO/R.Barnard, Z.Lee et al.), Optical (NOAO/AURA/NSF/REU Prog./B.Schoening, V.Harvey; Descubre Fndn./CAHA/OAUV/DSA/V.Peris
A close-up of the candidate black holes in Andromeda, as seen by the Chandra X-Ray Observatory. Credit: X-ray (NASA/CXC/SAO/R.Barnard, Z.Lee et al.), Optical (NOAO/AURA/NSF/REU Prog./B.Schoening, V.Harvey; Descubre Fndn./CAHA/OAUV/DSA/V.Peris

“In the case of Andromeda, we have a bigger bulge and a bigger supermassive black hole than in the Milky Way, so we expect more smaller black holes are made there as well,” Murray added.

The total number of candidates in M31 now stands at 35, since the researchers previously identified nine black holes in the area. All told, it’s the largest number of black hole candidates identified outside of the Milky Way.

Meanwhile, a study led by the NASA Goddard Space Flight Center examined the high-radiation environment inside a black hole — by simulation, of course. The researchers performed a supercomputer modelling of gas moving into a black hole, and found that their work helps explain some mysterious X-ray observations of recent decades.

Researchers distinguish between “soft” and “hard” X-rays, or those X-rays that have low and high energy. Both types have been observed around black holes, but the hard ones puzzled astronomers a bit.

Here’s what happens inside a black hole, as best as we can figure:

– Gas falls towards the singularity, orbits the black hole, and gradually becomes a flattened disk;

– As gas piles up in the center of the disk, it compresses and heats up;

– At a temperature of about 20 million degrees Fahrenheit (12 million degrees Celsius), the gas emits “soft” X-rays.

So where did the hard X-rays — that with energy tens or even hundreds of times greater than soft X-rays — come from? The new study showed that magnetic fields are amplified in this environment that then “exerts additional influence” on the gas, NASA stated.

Artist's conception of the Chandra X-Ray Observatory. Credit: NASA
Artist’s conception of the Chandra X-Ray Observatory. Credit: NASA

“The result is a turbulent froth orbiting the black hole at speeds approaching the speed of light. The calculations simultaneously tracked the fluid, electrical and magnetic properties of the gas while also taking into account Einstein’s theory of relativity,” NASA stated.

One key limitation of the study was it modelled a non-rotating black hole. Future work aims to model one that is rotating, NASA added.

You can check out more information about these two studies below:

– Andromeda black holes: Chandra identification of 26 new black hole candidates in the central region of M31. (Also available in the June 20 edition of The Astrophysical Journal.)

– X-ray modelling of black holes: X-ray Spectra from MHD Simulations of Accreting Black Holes. (Also available in the June 1 edition of The Astrophysical Journal.)

Sources: Chandra X-Ray Observatory and NASA