The Most Distant Star Ever Seen, Only 4.4 Billion Years After the Big Bang

In 1990, the Hubble Space Telescope was placed into Low Earth Orbit. Since then, Hubble has gone on to become the most well-known space observatory and has revealed some never-before-seen things about our Universe. Despite the subsequent deployment of several flagship telescopes – like the Kepler Space Telescope, the Chandra X-ray Observatory and the Spitzer Space TelescopeHubble is still accomplishing some amazing feats.

For instance, a team of astronomers recently used Hubble to locate the most distant star ever discovered. This hot blue star, which was located in a galaxy cluster, existed just 4.4 billion years after the Big Bang. The discovery of this star is expected to provide new insights into the formation and evolution of stars and galaxy clusters during the early Universe, as well as the nature of dark matter itself.

The discovery was made by an international team of scientists led by Patrick Kelly (of the University of Minnesota), Jose Diego (of the Instituto de Física de Cantabria in Spain) and Steven Rodney (of the University of South Carolina). Together, they observed the distant star in the galaxy cluster MACS J1149-2223 in April 2016 while studying the supernova explosion known as heic1525 (aka. Refsdal).

Using a technique known as gravitational microlensing, team relied on the total mass of the galaxy cluster itself to magnify the light coming from the supernova. However, while looking for this supernova, the team found an unexpected point source of light in the same galaxy. As Patrick Kelly explained in a recent Hubble press release:

“Like the Refsdal supernova explosion the light of this distant star got magnified, making it visible for Hubble. This star is at least 100 times farther away than the next individual star we can study, except for supernova explosions.”

The light observed from this star – named Lensed Star 1 (LS1) – was emitted just 4.4 billion years after the Big Bang (when the Universe was just 30% of its current age). The light was only detectable thanks to the microlensing effect caused by mass of the galaxy cluster and a compact object about three times the mass of our Sun within the galaxy itself. This allowed for the light coming from the star to be magnified by a factor of 2000.

Interestingly enough, the team also realized that this was not the first time this star had been observed. During a previous observation of the galaxy cluster, made in October 2016, the star was also acquired in an image – but went unnoticed at the time. As Diego noted:

“We were actually surprised to not have seen this second image in earlier observations, as also the galaxy the star is located in can be seen twice. We assume that the light from the second image has been deflected by another moving massive object for a long time — basically hiding the image from us. And only when the massive object moved out of the line of sight the second image of the star became visible.”

After finding the star in their survey, the team used Hubble again to obtain spectra from LS1 and determined that it is a B-type supergiant star – an extremely bright and blue class of star that has several times the mass of our Sun and is more than twice as hot. Given the star’s age, the discovery of LS1 is find on its own. At the same time, the discovery of this star will allow astronomers to gain new insights into the galaxy cluster itself.

As Steven Rodney indicated, “We know that the microlensing was caused by either a star, a neutron star, or a stellar-mass black hole.” As such, the discovery of LS1 will allow astronomers to study these objects (the latter of which are invisible) and estimate how many of them exist within this galaxy cluster.

Learning more about the constituents of galaxy clusters – the largest and most massive structures in the Universe – will also provide important clues about the composition of the Universe overall and how it evolved over time. This includes the important role played by dark matter in the evolution the Universe. As Kelly explained:

“If dark matter is at least partially made up of comparatively low-mass black holes, as it was recently proposed, we should be able to see this in the light curve of LS1. Our observations do not favour the possibility that a high fraction of dark matter is made of these primordial black holes with about 30 times the mass of the Sun.”

With the deployment of next-generation telescopes – like the James Webb Space Telescope – astronomers hope to learn even more about the earliest stars in the Universe. In so doing, they will be able to learn more about how it evolved over the past 10 billion years or so, and gain vital clues as to how dark matter played a role. In the meantime, Hubble still plays an all-important role in expanding our understanding of the cosmos.

And be sure to enjoy this episode of Hubblecast that explains this impressive find, courtesy of the ESA:

Further Reading: Hubble Space Telescope

Astronomers Discover First Mulitiple-image Gravitationally-lensed Supernova

How about four supernovae for the price of one? Using the Hubble Space Telescope, Dr. Patrick Kelly of the University of California-Berkeley along with the GLASS (Grism Lens Amplified Survey from Space) and Hubble Frontier Fields teams, discovered a remote supernova lensed into four copies of itself by the powerful gravity of a foreground galaxy cluster. Dubbed SN Refsdal, the object was discovered in the rich galaxy cluster MACS J1149.6+2223 five billion light years from Earth in the constellation Leo. It’s the first multiply-lensed supernova every discovered and one of nature’s most exotic mirages.

The rich galaxy cluster MACS J1149+2223 gained notoriety in 2012 when the most distant galaxy when the most distant galaxy found to date was discovered there through gravitational lensing.
The lensed supernova was discovered far behind the rich galaxy cluster MACS J1149.6+2223. The cluster is one of the most massive known and gained notoriety in 2012 when astronomers harnessed its powerful lensing ability to uncover the most distant galaxy known at the time. Credit: NASA/ESA/M. Postman STScI/CLASH team

Gravitational lensing grew out of Einstein’s Theory of Relativity wherein he predicted massive objects would bend and warp the fabric of spacetime. The more massive the object, the more severe the bending. We can picture this by imagining a child standing on a trampoline, her weight pressing a dimple into the fabric. Replace the child with a 200-pound adult and the surface of the trampoline sags even more.

Massive objects like the sun and even the planets warp the fabric of space. Here a planet orbits the sun but does not fall in because of its sideways orbital motion.
Massive objects like the Sun and even the planets warp the fabric of space. Here a planet orbits the Sun but doesn’t fall in because of its sideways orbital motion.

Similarly, the massive Sun creates a deep, but invisible dimple in the fabric of spacetime. The planets feel this ‘curvature of space’ and literally roll toward the Sun. Only their sideways motion or angular momentum keeps them from falling straight into the solar inferno.

Curved space created by massive objects also bends light rays. Einstein predicted that light from a star passing near the Sun or other massive object would follow this invisible curved spacescape and be deflected from an otherwise straight path. In effect, the object acts as a lens, bending and refocusing the light from the distant source into either a brighter image or multiple and distorted images. Also known as the deflection of starlight, nowadays we call it gravitational lensing.

This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. The scale has been greatly exaggerated; in reality, the distant galaxy is much further away and much smaller. Credit: NASA, ESA, L. Calcada
This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. The scale has been greatly exaggerated; in reality, the distant galaxy is much further away and much smaller. Credit: NASA, ESA, L. Calcada


Simulation of distorted spacetime around a massive galaxy cluster over time

Turns out there are lots of these gravitational lenses out there in the form of massive clusters of galaxies. They contain regular matter as well as vast quantities of the still-mysterious dark matter that makes up 96% of the material stuff in the universe. Rich galaxy clusters act like telescopes – their enormous mass and powerful gravity magnify and intensify the light of galaxies billions of light years beyond, making visible what would otherwise never be seen.

Here we see a central slice of the MACS cluster. A massive elliptical galaxy is responsible for splitting SN Refsdal into four images. It also distorts and lenses the purple-toned spiral galaxy that's host to the supernova. Credit:
This cropped image shows the central slice of the MACS J1149 galaxy cluster. A massive elliptical galaxy lenses the light of SN Refsdal into four separate images. It also distorts the purplish spiral galaxy that’s host to the supernova. Credit: NASA/ESA/M. Postman STScI/CLASH team

Let’s return to SN Refsdal, named for Sjur Refsdal, a Norwegian astrophysicist who did early work in the field of gravitational lensing.  A massive elliptical galaxy in the MACS J1149 cluster “lenses” the  9.4 billion light year distant supernova and its host spiral galaxy from background obscurity into the limelight. The elliptical’s powerful gravity’s having done a fine job of distorting spacetime to bring the supernova into view also distorts the shape of the host galaxy and splits the supernova into four separate, similarly bright images. To create such neat symmetry, SN Refsdal must be precisely aligned behind the galaxy’s center.

What looks like a galaxy with five nuclei really has just one (at center) surrounded by a mirage of four images of a distant quasar. The galaxy lies 400 million light years away; the quasar about 8 billion. Credit: NASA/ESA/Hubble
What looks like a galaxy with five nuclei really has just one (at center) surrounded by a mirage of four images of a distant quasar. The galaxy lies 400 million light years away; the quasar about 8 billion. Credit: NASA/ESA/Hubble

The scenario here bears a striking resemblance to Einstein’s Cross, a gravitationally lensed quasar, where the light of a remote quasar has been broken into four images arranged about the foreground lensing galaxy. The quasar images flicker or change in brightness over time as they’re microlensed by the passage of individual stars within the galaxy. Each star acts as a smaller lens within the main lens.

Color-composite image of lensing elliptical galaxy and distorted background  host spiral (top).The green circles show the locations of images S1–S4, while another quadruply imaged segment of the spiral arm is marked in  red. The bottom panels show two additional lensed images of the spiral host galaxy visible in the galaxy cluster field. Credit: S.L. Kelly et. all
Color-composite image of the lensing elliptical galaxy and distorted background host spiral (top). The green circles, S1-4, show the locations of the supernova images, while another quadruply imaged segment of the spiral arm is marked in red. The bottom panels show two additional lensed images of the spiral host galaxy visible in the galaxy cluster field.  Talk about a funhouse mirror! Credit: P.L. Kelly/GLASS/Hubble Frontier Fields

Detailed color images taken by the GLASS and Hubble Frontier Fields groups show the supernova’s host galaxy is also multiply-imaged by the galaxy cluster’s gravity. According to their recent paper, Kelly and team are still working to obtain spectra of  the supernova to determine if it resulted from the uncontrolled burning and explosion of a white dwarf star (Type Ia) or the cataclysmic collapse and rebound of a supergiant star that ran out of fuel (Type II).

The time light takes to travel to the Earth from each of the lensed images is different because each follows a slightly different path around the center of the lensing galaxy. Some paths are shorter, some longer. By timing the brightness variations between the individual images the team hopes to provide constraints not only on the distribution of bright matter vs. dark matter in the lensing galaxy and in the cluster but use that information to determine the expansion rate of the universe.

You can squeeze a lot from a cosmic mirage!