A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly

Artist's impression of a young star surrounded by a protoplanetary disc made of gas and dust. According to new research, ring-shaped, turbulent disturbances (substructures) in the disk lead to the rapid formation of several gas and ice giants. Credit: LMU / Thomas Zankl, crushed eyes media

The most widely recognized explanation for planet formation is the accretion theory. It states that small particles in a protoplanetary disk accumulate gravitationally and, over time, form larger and larger bodies called planetesimals. Eventually, many planetesimals collide and combine to form even larger bodies. For gas giants, these become the cores that then attract massive amounts of gas over millions of years.

But the accretion theory struggles to explain gas giants that form far from their stars, or the existence of ice giants like Uranus and Neptune.

Continue reading “A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly”

Not All Black Holes are Ravenous Gluttons

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. The light comes from gas and dust that's heated up before it's drawn into the black hole. Credit: ESO/M. Kornmesser

Some Supermassive Black Holes (SMBHs) consume vast quantities of gas and dust, triggering brilliant light shows that can outshine an entire galaxy. But others are much more sedate, emitting faint but steady light from their home in the heart of their galaxy.

Observations from the now-retired Spitzer Space Telescope help show why that is.

Continue reading “Not All Black Holes are Ravenous Gluttons”

Life Might Be Difficult to Find on a Single Planet But Obvious Across Many Worlds

This artist's illustration shows the exoplanet WASP-62B. Searching for chemical biosignatures on exoplanets is a painstaking process, weighed down by assumptions and prone to false positives. Is there a better way to find exoplanets with a chance to support life? Image Credit: CfA

If we could detect a clear, unambiguous biosignature on just one of the thousands of exoplanets we know of, it would be a huge, game-changing moment for humanity. But it’s extremely difficult. We simply aren’t in a place where we can be certain that what we’re detecting means what we think or even hope it does.

But what if we looked at many potential worlds at once?

Continue reading “Life Might Be Difficult to Find on a Single Planet But Obvious Across Many Worlds”

Astronomers Calculate Which Exoplanets Are Most Likely to Have Water

This illustration shows what the hot rocky exoplanet TRAPPIST-1 b could look like. A new method can help determine what rocky exoplanets might have large reservoirs of subsurface water. Credits: NASA, ESA, CSA, J. Olmsted (STScI)

Astronomers know of about 60 rocky exoplanets orbiting in the habitable zones of their stars. When they try to determine how habitable these planets might be, detecting water in their atmospheres plays a huge role. But what if there was another way of measuring the water content in these worlds?

Researchers are developing a way of modelling these worlds to determine how much water they have.

Continue reading “Astronomers Calculate Which Exoplanets Are Most Likely to Have Water”

Colliding Moons Might Have Created Saturn’s Rings

Saturn's rings are arguably the most recognizable feature in our Solar System and are made mostly of ice particles. New research says a collision between icy moons may have created them in the recent past. Image Credit: NASA/JPL/Space Science Institute

If we could wind the clock back billions of years, we’d see our Solar System the way it used to be. Planetesimals and other rocky bodies were constantly colliding with each other, and new objects would coalesce out of the debris. Asteroids rained down on the planets and their moons. The gas giants were migrating and contributing to the chaos by destroying gravitational relationships and creating new ones. Even moons and moonlets would’ve been part of the cascade of collisions and impacts.

When nature crams enough objects into a small enough space, it breeds collisions. A new study says that’s what happened at Saturn and created the planet’s dramatic rings.

Continue reading “Colliding Moons Might Have Created Saturn’s Rings”

Gluttonous Black Holes Eat Faster Than Thought. Does That Explain Quasars?

Illustration of an active quasar. What role does its dark matter halo play in activating the quasar? Credit: ESO/M. Kornmesser
Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

At the heart of large galaxies like our Milky Way, there resides a supermassive black hole (SMBH.) These behemoths draw stars, gas, and dust toward them with their irresistible gravitational pull. When they consume this material, there’s a bright flare of energy, the brightest of which are quasars.

While astrophysicists think that SMBHs eat too slowly to cause a particular type of quasar, new research suggests otherwise.

Continue reading “Gluttonous Black Holes Eat Faster Than Thought. Does That Explain Quasars?”

Want Artemis to Succeed? Virtual Reality Can Help

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

Artemis astronauts are returning to the Moon, and they’ll be following in Apollo’s footsteps when they go. But things are different this time. Not only is technology far more advanced, but so is the way we think about technology and how we design it.

A new paper shows how two of modern technology’s offspring— virtual reality (VR) and user-centred design (UCD)—can be brought to bear on the Artemis Program.

Continue reading “Want Artemis to Succeed? Virtual Reality Can Help”

It Would Take Hubble 85 Years to Match What Nancy Grace Roman Will See in 63 Days

This image, containing millions of simulated galaxies strewn across space and time, shows the areas Hubble (white) and Roman (yellow) can capture in a single snapshot. Credits: NASA/GSFC/A. Yung

Less than a year and a half into its primary mission, the James Webb Space Telescope (JWST) has already revolutionized astronomy as we know it. Using its advanced optics, infrared imaging, and spectrometers, the JWST has provided us with the most detailed and breathtaking images of the cosmos to date. But in the coming years, this telescope and its peers will be joined by another next-generation instrument: the Nancy Grace Roman Space Telescope (RST). Appropriately named after “the Mother of Hubble,” Roman will pick up where Hubble left off by peering back to the beginning of time.

Like Hubble, the RST will have a 2.4-meter (7.9 ft) primary mirror and advanced instruments to capture images in different wavelengths. However, the RST will also have a gigantic 300-megapixel camera – the Wide Field Instrument (WFI) – that will enable a field of view two-hundred times greater than Hubble’s. In a recent study, an international team of NASA-led researchers described a simulation they created that previewed what the RST could see. The resulting data set will enable new experiments and opportunities for the RST once it takes to space in 2027.

Continue reading “It Would Take Hubble 85 Years to Match What Nancy Grace Roman Will See in 63 Days”

Ultra-Massive Black Holes: How Does the Universe Produce Objects So Massive?

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way. It's huge, with over 4 times the mass of the Sun. But ultramassive black holes are even more massive and can contain billions of solar masses. Image Credit: Credit: NRAO/AUI/NSF

Black holes are the most massive objects that we know of in the Universe. Not stellar mass black holes, not supermassive black holes (SMBHs,) but ultra-massive black holes (UMBHs.) UMBHs sit in the center of galaxies like SMBHs, but they have more than five billion solar masses, an astonishingly large amount of mass. The largest black hole we know of is Phoenix A, a UMBH with up to 100 billion solar masses.

How can something grow so massive?

Continue reading “Ultra-Massive Black Holes: How Does the Universe Produce Objects So Massive?”

We Finally Understand how Black Holes can Release Powerful Flares

While black holes might always be black, they do occasionally emit some intense bursts of light from just outside their event horizon.  Previously, what exactly caused these flares had been a mystery to science.  That mystery was solved recently by a team of researchers that used a series of supercomputers to model the details of black holes’ magnetic fields in far more detail than any previous effort.  The simulations point to the breaking and remaking of super-strong magnetic fields as the source of the super-bright flares.

Continue reading “We Finally Understand how Black Holes can Release Powerful Flares”