The First Results From The IllustrisTNG Simulation Of The Universe Has Been Completed, Showing How Our Cosmos Evolved From The Big Bang

The first results of the IllustrisTNG Project have been published in three separate studies, and they’re shedding new light on how black holes shape the cosmos, and how galaxies form and grow. The IllustrisTNG Project bills itself as “The next generation of cosmological hydrodynamical simulations.” The Project is an ongoing series of massive hydrodynamic simulations of our Universe. Its goal is to understand the physical processes that drive the formation of galaxies.

At the heart of IllustriousTNG is a state of the art numerical model of the Universe, running on one of the most powerful supercomputers in the world: the Hazel Hen machine at the High-Performance Computing Center in Stuttgart, Germany. Hazel Hen is Germany’s fastest computer, and the 19th fastest in the world.

The Hazel Hen Supercomputer is based on Intel processors and Cray network technologies. Image: IllustrisTNG

Our current cosmological model suggests that the mass-energy density of the Universe is dominated by dark matter and dark energy. Since we can’t observe either of those things, the only way to test this model is to be able to make precise predictions about the structure of the things we can see, such as stars, diffuse gas, and accreting black holes. These visible things are organized into a cosmic web of sheets, filaments, and voids. Inside these are galaxies, which are the basic units of cosmic structure. To test our ideas about galactic structure, we have to make detailed and realistic simulated galaxies, then compare them to what’s real.

Astrophysicists in the USA and Germany used IllustrisTNG to create their own universe, which could then be studied in detail. IllustrisTNG correlates very strongly with observations of the real Universe, but allows scientists to look at things that are obscured in our own Universe. This has led to some very interesting results so far, and is helping to answer some big questions in cosmology and astrophysics.

How Do Black Holes Affect Galaxies?

Ever since we’ve learned that galaxies host supermassive black holes (SMBHs) at their centers, it’s been widely believed that they have a profound influence on the evolution of galaxies, and possibly on their formation. That’s led to the obvious question: How do these SMBHs influence the galaxies that host them? Illustrious TNG set out to answer this, and the paper by Dr. Dylan Nelson at the Max Planck Institute for Astrophysics shows that “the primary driver of galaxy color transition is supermassive blackhole feedback in its low-accretion state.”

“The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” – Dr. Dylan Nelson, Max Planck Institute for Astrophysics,

Galaxies that are still in their star-forming phase shine brightly in the blue light of their young stars. Then something changes and the star formation ends. After that, the galaxy is dominated by older, red stars, and the galaxy joins a graveyard full of “red and dead” galaxies. As Nelson explains, “The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” But how do they do that?

Nelson and his colleagues attribute it to supermassive black hole feedback in its low-accretion state. What that means is that as a black hole feeds, it creates a wind, or shock wave, that blows star-forming gas and dust out of the galaxy. This limits the future formation of stars. The existing stars age and turn red, and few new blue stars form.

This is a rendering of gas velocity in a massive galaxy cluster in IllustrisTNG. Black areas are hardly moving, and white areas are moving at greater than 1000km/second. The black areas are calm cosmic filaments, the white areas are near super-massive black holes (SMBHs). The SMBHs are blowing away the gas and preventing star formation. Image: IllustrisTNG

How Do Galaxies Form and How Does Their Structure Develop?

It’s long been thought that large galaxies form when smaller galaxies join up. As the galaxy grows larger, its gravity draws more smaller galaxies into it. During these collisions, galaxies are torn apart. Some stars will be scattered, and will take up residence in a halo around the new, larger galaxy. This should give the newly-created galaxy a faint background glow of stellar light. But this is a prediction, and these pale glows are very hard to observe.

“Our predictions can now be systematically checked by observers.” – Dr. Annalisa Pillepich (Max Planck Institute for Astrophysics)

IllustrisTNG was able to predict more accurately what this glow should look like. This gives astronomers a better idea of what to look for when they try to observe this pale stellar glow in the real Universe. “Our predictions can now be systematically checked by observers,” Dr. Annalisa Pillepich (MPIA) points out, who led a further IllustrisTNG study. “This yields a critical test for the theoretical model of hierarchical galaxy formation.”

A composite image from IllustrisTNG. Panels on the left show galaxy-galaxy interactions and the fine-grained structure of extended stellar halos. Panels on the right show stellar light projections from two massive central galaxies at the present day. It’s easy to see how the light from massive central galaxies overwhelms the light from stellar halos. Image: IllustrisTNG

IllustrisTNG is an on-going series of simulations. So far, there have been three IllustrisTNG runs, each one creating a larger simulation than the previous one. They are TNG 50, TNG 100, and TNG 300. TNG300 is much larger than TNG50 and allows a larger area to be studied which reveals clues about large-scale structure. Though TNG50 is much smaller, it has much more precise detail. It gives us a more detailed look at the structural properties of galaxies and the detailed structure of gas around galaxies. TNG100 is somewhere in the middle.

TNG 50, TNG 100, and TNG 300. Image: IllustrisTNG

IllustrisTNG is not the first cosmological hydrodynamical simulation. Others include Eagle, Horizon-AGN, and IllustrisTNG’s predecessor, Illustris. They have shown how powerful these predictive theoretical models can be. As our computers grow more powerful and our understanding of physics and cosmology grow along with them, these types of simulations will yield greater and more detailed results.

Astronomy Cast Ep. 468: Simulations for Science and Fun

Astronomers depend on simulations to study the Universe. From relatively straightforward orbital simulations to vast simulations that try to recreate the large scale structure of the Universe from the Big Bang. Today we’re going to talk about some of those simulations, as well as tools you can use simulate the Universe.

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Astronomers See a Massive Black Hole Tear a Star Apart

A telescope peers into the blackness of deep space. Suddenly – a brilliant flash of light appears that wasn’t there before. What could it be? A supernova? Two massively dense stars fusing together? Perhaps a gamma ray burst?

Five years ago, researchers using the ROTSE IIIb telescope at McDonald Observatory noticed just such an event. But far from being your run-of-the-mill stellar explosion or neutron star merger, the astronomers believe that this tiny flare was, in fact, evidence of a supermassive black hole at the center of a distant galaxy, tearing a star to shreds.

Astronomers at McDonald had been using the telescope to scan the skies for such nascent flashes for years, as part of the ROTSE Supernova Verification Project (SNVP). And at first blush, the event seen in early 2009, which the researches nicknamed “Dougie,” looked just like many of the other supernovae they had discovered over the course of the project. With a blazing – 22.5-magnitude absolute brightness, the event fit squarely within the class of superluminous supernovae that the researchers were already familiar with.

But as time went on and more data on Dougie rolled in, the astronomers began to change their minds. X-ray observations made by the orbiting Swift satellite and optical spectra taken by McDonald’s Hobby-Eberly Telescope revealed an evolving light curve and chemical makeup that didn’t fit with computer simulations of superluminous supernovae. Likewise, Dougie didn’t appear to be a neutron star merger, which would have reached peak luminosity far more quickly than was observed, or a gamma ray burst, which, even at an angle, would have appeared far brighter in x-ray light.

That left only one option: a so-called “tidal disruption event,” or the carnage and spaghettification that occurs when a star wanders too close to a black hole’s horizon. J. Craig Wheeler, head of the supernova group at The University of Texas at Austin and a member of the team that discovered Dougie, explained that at short distances, a black hole’s gravity exerts a much stronger pull on the side of the star nearest to it than it does on the star’s opposite side. He explained, “These especially large tides can be strong enough that you pull the star out into a noodle.”

The team refined their models of the event and came to a surprising conclusion: having drawn in Dougie’s stellar material a bit faster than it could handle, the black hole was now “choking” on its latest meal. This is due to an astrophysical principle called the Eddington Limit, which states that a black hole of a given size can only handle so much infalling material. After this limit has been reached, any additional intake of matter exerts more outward pressure than the black hole’s gravity can compensate for. This pressure increase has a kind of rebound effect, throwing off material from the black hole’s accretion disk along with heat and light. Such a burst of energy accounts for at least part of Dougie’s brightness, but also indicates that the original dying star – a star not unlike our own Sun – wasn’t going down without a fight.

Combining these observations with the mathematics of the Eddington Limit, the researchers estimated the black hole’s size to be about 1 million solar masses – a rather small black hole, at the center of a rather small galaxy, three billion light years away. Discoveries like these not only allow astronomers to better understand the physics of black holes, but also properties of their often unassuming home galaxies. After all, mused Wheeler, “Who knew this little guy had a black hole?”

To get a simulated glimpse of Dougie for yourself, check out the amazing animation below, courtesy of team member James Guillochon:

The research is published in this month’s issue of The Astrophysical Journal. A pre-print of the paper is available here.

Halos Gone MAD

[/caption]

One of the successes of the ΛCDM model of the universe is the ability for models to create structures of with scales and distributions similar to those we view in the universe today. Or, at least that’s what astronomers tell us. While computer simulations can recreate numerical universes in a box, interpreting these mathematical approximations is a challenge in and of itself. To identify the components of the simulated space, astronomers have had to develop tools to search for structure. The results has been nearly 30 independent computer programs since 1974. Each promises to reveal the forming structure in the universe by finding regions in which dark matter halos form. To test these algorithms out, a conference was arranged in Madrid, Spain during the May of 2010 entitled “Haloes going MAD” in which 18 of these codes were put to the test to see how well they stacked up.

Numerical simulations for universes, like the famous Millennium Simulation begin with nothing more than “particles”. While these were undoubtedly small on a cosmological scale, such particles represent blobs of dark matter with millions or billions solar masses. As time is run forwards, they are allowed to interact with one another following rules that coincident with our best understanding of physics and the nature of such matter. This leads to an evolving universe from which astronomers must use the complicated codes to locate the conglomerations of dark matter inside which galaxies would form.

One of the main methods such programs use is to search for small overdensities and then grow a spherical shell around it until the density falls off to a negligible factor. Most will then prune the particles within the volume that are not gravitationally bound to make sure that the detection mechanism didn’t just seize on a brief, transient clustering that will fall apart in time. Other techniques involve searching other phase spaces for particles with similar velocities all nearby (a sign that they have become bound).

To compare how each of the algorithms fared, they were put through two tests. The first, involved a series of intentionally created dark matter halos with embedded sub-halos. Since the particle distribution was intentionally placed, the output from the programs should correctly find the center and size of the halos. The second test was a full fledged universe simulation. In this, the actual distribution wouldn’t be known, but the sheer size would allow different programs to be compared on the same data set to see how similarly they interpreted a common source.

In both tests, all the finders generally performed well. In the first test, there were some discrepancies based on how different programs defined the location of the halos. Some defined it as the peak in density, while others defined it as a center of mass. When searching for sub-halos, ones that used the phase space approach seemed to be able to more reliably detect smaller formations, yet did not always detect which particles in the clump were actually bound. For the full simulation, all algorithms agreed exceptionally well. Due to the nature of the simulation, small scales weren’t well represented so the understanding of how each detect these structures was limited.

The combination of these tests did not favor one particular algorithm or method over any other. It revealed that each generally functions well with regard to one another. The ability for so many independent codes, with independent methods means that the findings are extremely robust. The knowledge they pass on about how our understanding of the universe evolves allows astronomers to make fundamental comparisons to the observable universe in order to test the such models and theories.

The results of this test have been compiled into a paper that is slated for publication in an upcoming issue of the Monthly Notices of the Royal Astronomical Society.

All-Student Crew Lands at Mars Research Station

[/caption]

Headline from the future? Actually, it’s happening now, although not quite on Mars, but about as close as humans can currently get. Six college students are the latest crew to embark on a two-week stint at the Mars Desert Research Station, a simulated Mars habitat set up by the Mars Society located in the San Rafael Swell of Utah. Looking across the very Mars-like red, rocky, panoramic vistas outside the habitat, participants might think they are on the Red Planet. And this latest crew, the 99th for MDRS, will be testing a microbial detection system and an EVA optimization method using an iPad.

The MDRS Campus in Utah, with the Habitat, observatory and greenhab.

The students — all graduate students or about to be – are from different colleges but came together in the summer of 2010 at the NASA Academy at the Ames Research Center in California, a 10-week immersive research internship.

“At the NASA Academy, we worked on a group project called LAMBDA – the Life and Microbial Detection Apparatus,” participant Max Fagin, from Dartmouth University, told Universe Today. “We wanted to do some follow-up work, in looking at microbial fuel cells, which run off the metabolic activity of bacteria — technology that could be applied to sewage reclamation plants in order to generate power.”

Fagin said the technology has been around a while, but they are trying to adapt it to detect microbes in soil samples, similar to what the Viking mission did in the 1970’s.

“We put a sample into the device and based on the power that is generated you can determine whether that power is coming from microbial activity or organic activity,” Fagin said.

They finished the summer internship with a good theoretical analysis and a non-working prototype, but wanted to field test their research, as well as continue work on other individual projects.

Crew patch for Crew LAMBDA.

Donna Viola, a senior undergraduate at the University of Maryland, Baltimore County, had been on two crew rotations on the MDRS previously and suggested to her fellow NASA Academy team that they apply as a group to the MDRS where they could test LAMBDA in actual conditions, with actual soil samples in the field where there may be potentially extremophile forms of life to find.

The team was accepted and began their crew rotation at MDRS on January 29. They will be there until February 12, all the while in complete Mars simulation. Crew members must wear a space suit when going outside the Habitat; they eat only space-travel type food (along with vegetables grown on-site in a greenhouse); power is provided by batteries or a power generation system; and there is also a water recycling system.

Viola is the Commander, Heidi Beemer is the team geologist and Executive Commander, Kevin Newman is the Engineer, Andie Gilkey is the team scientist and Health and Safety Officer, Chief Biologist, Sukrit Ranjan is the team astronomer and Fagin is the EVA Engineer.

See the crew biographies.

14 students total were part of the NASA Ames Academy, and even though only 6 are at the MDRS, the rest are serving as ground and mission support.

The last six weeks the team has been updating the LAMBDA device and making it field worthy, integrating it with the control system, and testing it.

While at MDRS, the crew has a few other projects, such as working on a proposed combination EVA planner and EVA monitor that runs on an iPad. “It monitors the astronauts’ health, vital signs, how much energy they are consuming, whether they should speed up or slow down – it’s basically an EVA optimizer,” Fagin said.

The Musk Observatory located at the Mars Desert Research Station

They will also fly a payload on a high altitude balloon that tests the feasibility of using balloon borne payloads on Mars. “There are no FAA regulations on Mars, so on Mars you could build a weather station on a balloon – such as on a 10 km tether and reel it in and out to get very nice vertical cuts of the atmospheric profiles of wind velocity and direction and dust profiles,” Fagin explained. “And also you could do astronomy by launching a small telescope. But we can’t do the tether part because they are here on Earth so we’ll be using a balloon and have to retrieve it.” They will also be flying a generic meteorological payloads and doing astronomical projects at the observatory on site, the Musk Observatory, which has a 14-inch telescope.

During their stay, the crew is required to send daily reports and dispatches from the commander, engineers, crew scientists, and journalists through the MDRS website which provides updates on the status of science experiments, updates on crew health and morale, and on the habitat and how it is faring. There is also a live webcam of different parts of the station.

MDRS is the second research station to be built by the Mars Society. The first was the Arctic station (FMARS) on Devon Island, built in 2000. Stations to be built in Europe (European Mars Analog Research Station / Euro MARS) and Australia (Australia Mars Analog Research Station / MARS Oz) are currently in the planning stages.

The goal of these analog research stations is to develop key knowledge, field tactics and equipment needed to prepare for the human exploration of Mars, testing habitat design features and tools, and to assess crew selection protocols. Utah is much warmer than Mars, the desert location is optimal because of its Mars-like terrain and appearance.

Find out more information on participating in the MDRS.

The first dispatches from the LAMBDA crew report how they are getting acclimated to the habitat and the equipment, as well as preparing for doing their actual science research.

Fagin said without the NASA Academy at Ames, this group of students wouldn’t be together at the MDRS today.

“This grew out of everything we did at the NASA Academy,” he said. “Without those experiences we would have no idea how to approach the situation, wouldn’t understand the science or engineering that needs to go into such a project, and certainly wouldn’t have the team-working abilities to do this if we hadn’t developed them while we were at the NASA Academy.”

Learn more about the NASA Ames Academy.

Universe Today hopes to provide an update on the LAMBDA crew’s activities.