Space Station Trio Touches Down on Earth as NASA’s Next Cargo Ship Targets Apr. 18 Blastoff

Expedition 50 Commander Shane Kimbrough of NASA, and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos, touched down southeast of the remote town of Dzhezkazgan in Kazakhstan at 7:20 a.m. EDT April 10, 2017 in their Soyuz MS-02 spacecraft. Photo Credit: (NASA/Bill Ingalls)

Comings and goings continue apace on the International Space Station! After living and working fruitfully for six months in space aboard the ISS, an international trio of astronauts and cosmonauts including NASA’s Shane Kimbrough departed the orbiting lab complex aboard their Soyuz capsule and plummeted back safely through the Earth’s atmosphere to a soft touchdown in Kazahkstan on Monday- as NASA meanwhile targets liftoff of the next US resupply ship a week from today.

These are busy times indeed with regular flights to low Earth orbit and back to maintain and enhance the scientific research aboard the multinationally built and funded million pound orbiting outpost.

ISS Expedition 50 came to a glorious end for Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos as they returned to Earth Monday, April 10 in Kazakhstan aboard their Soyuz spacecraft after spending 173 days aloft in the weightless environment of space.

With his return to Earth April 10, 2017, from a mission aboard the International Space Station, NASA astronaut Shane Kimbrough now has spent 189 days in space on two flights. Credits: NASA TV

The Russian Soyuz MS-02 capsule touched down safely by making a parachute assisted landing in Kazakhstan at approximately 7:20 a.m. EDT (5:20 p.m. Kazakhstan time).

The three person crew comprising Kimbrough, Ryzhikov and Andrey Borisenko landed southeast of the remote town of Dzhezkazgan in Kazakhstan.

Meanwhile as the trio were landing, NASA is targeting launch of the next commercial cargo ship for blastoff on April 18 with more than three tons of science and supplies to stock the station for the Expedition 51 crew.

Christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962 – the next Orbital ATK Cygnus cargo ship heading to the space station will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Liftoff of the S.S. John Glenn from NASA commercial cargo provider Orbital ATK on their seventh commercial resupply services mission to the ISS is slated for 11 a.m. EDT Tuesday, April 18.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

During their time in orbit, the Expedition 50 crew members contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the world-class orbiting laboratory.

“For example, the Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity. Results from this investigation could lead to the treatment of diseases and injury in space, and provide a way to improve stem cell production for medical therapies on Earth,” said NASA.

“The Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates, such as rodents and humans, from regenerating lost bone and tissue, and how microgravity conditions impact the process. Results will provide a new understanding of the biological reasons behind a human’s inability to regrow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic, non-healing wounds.”

The Soyuz MS-02 spacecraft is seen as it lands with Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of Roscosmos near the town of Zhezkazgan, Kazakhstan on Monday, April 10, 2017 (Kazakh time). Credit: NASA/Bill Ingalls

Kimbrough, Ryzhikov and Andrey Borisenko served as members of the Expedition 49 and 50 crews onboard the International Space Station during their 173 days in orbit.

During two flights Kimbrough has now amassed 189 days in space. During his two flights Borisenko now totals 337 days in space. Rookie Ryzhikov logged 173 days in space.

They leave behind another trio of crewmates who will continue as Expedition 51; namely NASA astronaut and new station commander Peggy Whitson, Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).

The next manned Soyuz launch will carry just two crewmembers. Due to Russian funding cutbacks only 1 cosmonaut will launch. The crew comprises Jack Fischer of NASA and Fyodor Yurchikhin of Roscosmos. They are scheduled to launch Thursday, April 20 from Baikonur, Kazakhstan.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Dragon Arrives at Space Station with Tons of Earth and Human Science Experiments

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

KENNEDY SPACE CENTER, FL – A SpaceX Dragon supply ship jam packed with more than 2.5 tons of critical science gear, crew supplies and 40 mice successfully arrived this morning at the International Space Station (ISS) – where six humans from the US, Russia and France are living and working aboard.

Dragon reached the station four days after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory.

Astronauts Thomas Pesquet of ESA (European Space Agency) and station commander Shane Kimbrough of NASA deftly maneuvered the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm to reach out and flawlessly capture the Dragon CRS-10 spacecraft at about 5:44 a.m. EST early Thursday, after it arrived at the station.

The SpaceX CRS-10 Dragon is pictured in the grips of the Canadarm2 shortly after its capture by astronauts Shane Kimbrough and Thomas Pesquet on Feb. 23, 2017. Credit: NASA TV

Pesquet and Kimbrough were working at the robotics work station inside the seven windowed Cupola module as they monitored Dragon’s approach for capture by the grappling snares on the terminus of the robotic arm this morning as the station was soaring over the northwest coast of Australia.

“Looks like we have a great Dragon capture,” said capcom astronaut Mike Hopkins.

“We want to congratulate all the teams working around the world for the successful arrival,” said Pesquet.

The million pound station is orbiting approximately 250 miles (400 km) above Earth.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The commercial Dragon cargo freighter arrived about 16 minutes earlier than originally planned.

The duo were assisted by experienced NASA astronaut Peggy Whitson. The 57 year old Whitson will soon set a record for most time spent in space by an American on April 24.

The gumdrop shaped Dragon cargo freighter slowly and methodically approached the station and the capture point through the required approach corridor during the final stages of the orbital chase.

After hovering at the capture point in free drift at a distance of about 34 feet (11 m) from the orbiting outpost, the crew members extended the robotic arm and Dragon was successfully plucked from free space using Canardarm2 at the grapple fixture located on the side of the supply ship.

The entire thrilling approach and grappling sequence was broadcast live on NASA TV.

SpaceX Dragon arrives at the 30 meter hold point during final approach to International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

Robotics officers on the ground at the NASA’s Johnson Space Center then took over and berthed Dragon to the Earth facing port on the Harmony module at about 8 a.m. as the mated craft were soaring over central America.

16 latches and bolts on the stations Common Berthing Mechanism (CBM) will hold Dragon firmly in place for a hard mate to the stations Harmony module.

4 gangs of 4 bolts were driven into place with ground commands from the robotics officer to firmly bolt Dragon to the nadir port on Harmony.

The second stage capture and Dragon installation was confrmed at 8:12 a.m. Feb 23 as the craft were flying over the US East Coast.

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

“Today was smooth sailing as Dragon arrived below the space station and maneuvered its way through a carefully choreographed procedure to the grapple position for rendezvous and capture.”

“Dragon is now firmly attached to the International Space Station and the crew will begin unloading critical science payloads and supplies this afternoon.”

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

Yesterday’s rendezvous was automatically aborted when a bad bit of navigational data was uplinked to Dragons relative GPS navigation system as it was about 0.7 miles below the station.

“The Dragon’s computers received an incorrect navigational update, triggering an automatic wave off. Dragon was sent on a “racetrack” trajectory in front of, above and behind the station for today’s second rendezvous attempt.”

There was never any danger to the crew, space station or Dragon. It merely arrived a day later than planned as it is fully equipped to do if needed.

The SpaceX Dragon was successfully installed to the Harmony module a few hours after it was captured with the Canadarm2 by the crew on Feb 23, 2017. This artists concept shows the location of several visiting vehicles including Dragon, Soyuz and BEAM expandable module. Credit: NASA

CRS-10 counts as the company’s tenth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The Dragon is the first of two cargo craft arriving at the station over two consecutive days.

The unpiloted Russian Progress 66 supply ship launched yesterday from Baikonur is slated to arrive early Friday morning with 2.9 tons of supplies. It will automatically dock at the Pirs docking module at about 3:45 a.m., with a trio of Russian cosmonauts monitoring all the action.

After conducting leak checks, the crew plans to open the hatch to Dragon later today.

They will quickly begin removing the highest priority science investigations and gear first.

Dragon will remain at the station for about 30 days.

SpaceX Falcon 9 rocket and Dragon cargo ship rests horizontal atop Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 as work crews use the access room to load ‘late stow’ science experiments aboard Dragon – as seen from inside the pad perimeter. This is the first rocket launched from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission occurred on 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

1000 pounds of ‘late stow’ experiments were loaded the day before the originally planned Feb. 18 liftoff of the SpaceX Falcon 9 rocket.

Dragon was successfully launched from NASA’s Kennedy Space Center atop the 213-foot-tall (65-meter) SpaceX Falcon 9 rocket at 9:38 a.m. EST on Feb. 19, 2017 from historic Launch Complex 39A to low Earth orbit.

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

The 40 mice will be used in a wound healing experiment to test therapies in microgravity.

An advanced plant growth habitat will launch soon to test better technologies for growing crops in space that could contribute to astronauts nutrition on long duration spaceflights.

SpaceX Dragon CRS-10 Cargo manifest from NASA:

TOTAL CARGO: 5489.5 lbs. / 2490 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3373.1 lbs. / 1530 kg

• Science Investigations 1613.8 lbs. / 732 kg
• Crew Supplies 652.6 lbs. / 296 kg
• Vehicle Hardware 842.2 lbs. / 382 kg
• Spacewalk Equipment 22.0 lbs. / 10 kg
• Computer Resources 24.2 lbs. / 11 kg
• Russian Hardware 48.5 lbs. / 22 kg

UNPRESSURIZED

• SAGE-III & STP-H5 Lightning Imaging Sensor 2116.4 lbs. / 960 kg

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

31 Years After Disaster, Challenger Soccer Ball Finally Gets To Orbit

Astronaut Shane Kimbrough took this photo of the Challenger soccer ball floating in front of the ISS's cupola window to mark NASA's day of remembrance for the Challenger disaster. Image: NASA

The Challenger disaster is one of those things that’s etched into people’s memories. The launch and resulting explosion were broadcast live. Professional astronauts may have been prepared to accept their fate, but that doesn’t make it any less tragic.

There’ve been fitting tributes over the years, with people paying homage to the crew members who lost their lives. But a new tribute is remarkable for its simplicity. And this new tribute is all centred around a soccer ball.

Ellison Onizuka was one of the Challenger seven who perished on January 28, 1986, when the shuttle exploded 73 seconds into its flight. His daughter and other soccer players from Clear Lake High School, near NASA’s Johnson Space Center, gave Ellison a soccer ball to take into space with him. Almost unbelievably, the soccer ball was recovered among the wreckage after the crash.

Ellison Onizuka, one of the seven who perished in the Challenger accident, carried a soccer ball into space. The ball was given to him by his daughter and other soccer players at a local high school. Image: NASA
Ellison Onizuka, one of the seven who perished in the Challenger accident, carried a soccer ball into space. The ball was given to him by his daughter and other soccer players at a local high school. Image: NASA

The soccer ball was returned to the high school, where it was on display for the past three decades, with its meaning fading into obscurity with each passing year. Eventually, the Principal of the high school, Karen Engle, learned about the significance of the soccer ball’s history.

Because of Clear Lake High School’s close proximity to the Johnson Space Center, another astronaut now has a son attending the same school. His name is Shane Kimbrough, and he offered to carry a memento from the high school into space. That’s when Principal Engle had the idea to send the soccer ball with Kimbrough on his mission to the International Space Station.

NASA astronaut Shane Kimbrough, who took the soccer ball into space. Image: NASA
NASA astronaut Shane Kimbrough, who took the soccer ball into space. Image: NASA

The causes of the Challenger accident are well-known. An O-ring failed in the cold temperature, and pressurized burning gas escaped and eventually caused the failure of the external fuel tank. The resulting fiery explosion left no doubt about the fate of the people onboard the shuttle.

It’s poignant that the soccer ball got a second chance to make it into space, when the Challenger seven never will. This tribute is touching for its simplicity, and is somehow more powerful than other tributes made with fanfare and speeches.

It must be difficult for family members of the Challenger seven to see the photos and videos of the explosion. Maybe this simple image of a soccer ball floating in zero gravity will take the place of those other images.

The Challenger seven deserve to be remembered for their spirit and dedication, rather than for the explosion they died in.

These are the seven people who perished in the Challenger accident:

  • Ellison Onizuka
  • Francis R. Scobee
  • Michael J. Smith
  • Ronald McNair
  • Judith Resnik
  • Gregory Jarvis
  • Christa McAuliffe

Merry Christmas From Space 2016

All six members of the Expedition 50 crew aboard the International Space Station celebrated the holidays together with a festive meal on Christmas Day, Dec. 25, 2016  Image Credit: NASA
All six members of the Expedition 50 crew aboard the International Space Station celebrated the holidays together with a festive meal on Christmas Day, Dec. 25, 2016. Image Credit: NASA

As we celebrate the Christmas tidings of 2016 here on Earth, a lucky multinational crew of astronauts and cosmonauts celebrate the festive season floating in Zero-G while living and working together in space aboard the Earth orbiting International Space Station (ISS) complex – peacefully cooperating to benefit all humanity.

Today, Dec. 25, 2016, the six person Expedition 50 crew of five men and one woman marked the joyous holiday of Christ’s birth by gathering for a festive meal in space – as billions of Earthlings celebrated this Christmas season of giving, remembrance and peace to all here on our home planet.

This year is an especially noteworthy Space Christmas because it counts as Expedition 50. This is the 50th crew to reside on board since the space station began operating with permanent occupancy by rotating crews all the way back to 1998.

The Expedition 50 crew currently comprises of people from three nations supporting the ISS – namely the US, Russia and France; Commander Shane Kimbrough from NASA and flight engineers Andrey Borisenko (Roscosmos), Sergey Ryzhikov (Roscosmos), Thomas Pesquet (ESA), Peggy Whitson (NASA), and Oleg Novitskiy (Roscosmos).

Here a short video of holiday greetings from a trio of crew members explaining what Christmas in Space means to them:

Video Caption: Space Station Crew Celebrates the Holidays Aboard the Orbital Lab. Aboard the International Space Station, Expedition 50 Commander Shane Kimbrough and Peggy Whitson of NASA and Thomas Pesquet of the European Space Agency discussed their thoughts about being in space during the holidays and how they plan to celebrate Christmas and New Year’s in a downlink. Credit: NASA

“Hello from the Expedition 50 Crew! We’d like to share what Christmas means to us,” said Expedition 50 Commander Shane Kimbrough.

“For me it’s a lot about family,” said Expedition 50 Commander Shane Kimbrough. “We always travel to meet up with our family which is dispersed across the country. And we go home to Georgia and Florida … quite abit to meet up. Always a great time to get together and share with each other.”

“Although its typically thought of a season to get things, we in our family think about the giving aspect. Giving of our many talents and resources. Especially to those less fortunate.”

Kimbrough arrived on the complex in October, followed a month later by Whitson and Pesquet in November.

They were all launched aboard Russian Soyuz capsules from the Baikonur Cosmodrome in Kazakhstan.

Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the cupola on Dec. 18, 2016. Credit: NASA.
Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the cupola on Dec. 18, 2016. Credit: NASA.

And Peggy Whitson especially has a lot to celebrate in space!

Because not only is Whitson currently enjoying her third long-duration flight aboard the station – as an Expedition 50 flight engineer. Soon she will become the first woman to command the station twice ! That momentous event happens when she assumes the role of Space Station Commander early in 2017 during the start of Expedition 51.

“In addition to family, there is another very important aspect to being on the ISS,” said Whitson.

“That is seeing the planet as a whole. It actually reinforces I think, that fact that we should live as one people and strive for peace.”

“I second the comments already made. I grew up in a family of 25 cousins,” said ESA’s Thomas Pesquet. “The only time we could catch up was around Christmas time…. So I always looked forward to that, although this year I can’t be with them of course … and will think of them.”

“I am making the most of this opportunity to look at the Earth. Reflect about what Christmas means to us as individuals and to the world in general. And we will have a good time on board the ISS and share a Christmas meal together.”

Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the Japanese Kibo laboratory module on Dec. 18, 2016. Credit: NASA
Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the Japanese Kibo laboratory module on Dec. 18, 2016. Credit: NASA

The crew is enjoying a light weekend of work and a day off tomorrow, Dec. 26.

After that they begin preparing for a pair of spacewalks in the new year by Kimbrough and Whitson – scheduled for Jan. 6 and 13. The crew is checking the spacesuits by testing the water among other activities.

The goal of the excursions is to “complete the replacement of old nickel-hydrogen batteries with new lithium-ion batteries on the station’s truss structure,” says NASA.

Research work also continues.

“Whitson, who is spending her second Christmas in space, and Pesquet drew blood, urine and saliva samples for the Fluid Shifts study. That experiment investigates the upward flow of body fluids in space potentially causing lasting vision changes in astronauts.”

NASA astronaut Peggy Whitson floats through the Unity module aboard the International Space Station. On her third long-duration flight aboard the station, Whitson will become the first woman to command the station twice when she assumes the role during Expedition 51. Credit: NASA

Among other activities, the crew is also unloading 4.5 tons of internal and external cargo, gear and fresh food – including six lithium-ion batteries – from Japan’s sixth H-II Transfer Vehicle (HTV-6), which recently arrived at the ISS on Dec 13.

The next regular US cargo delivery is likely to be in March 2017, when an unmanned Orbital ATK Cygnus cargo freighter is slated to launch on a ULA Atlas V from Cape Canaveral. A Cygnus was also launched on a ULA Atlas V in March 2016.

A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

SpaceX also hopes to resume Dragon cargo launches sometime in the new year after they resolve the issues that led to the destruction of a SpaceX Falcon 9 on Sept. 1 during fueling operations at pad 40 on the Cape.

Meanwhile Roscosmos continues to investigate the causes of the failed launch of the unmanned Russian Progress 65 resupply ship on Dec. 1 due to a 3rd stage anomaly.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Why Spacewalking Is All About The Hands

Think about your typical construction worker — there’s a lot of reaching, bending, stretching, lifting. How do you accomplish those tasks without gravity, as astronauts do on the International Space Station?

According to astronaut Shane Kimbrough — who should know, as he spent more than 12 hours “outside” doing station work and repairs during shuttle mission STS-126 in 2008 — instead of using your feet, you transfer most of the work to your hands. Your feet are basically used to brace yourself.

“You’re moving around, kind of walking with your hands, and pulling yourself in between the handholds and the rails,” he said to Universe Today, expanding on comments he made publicly at a conference last week.

Astronauts train for hours in a large pool known as the Neutral Buoyancy Laboratory, which includes a full-size model of the station modules inside. “You build up the [hand] strength in the NBL,” Kimbrough said, “with your hands fighting against the pressure of the spacesuit. If you didn’t do that, your hands would be fatigued [during a spacewalk.]”

It’s not a perfect training environment, though. “The big difference in the water is the drag it produces. You don’t realize you are floating, at times. If you’re moving along and walking with your hands down the rail, and you stop, you will immediately stop. In space, the mass of your spacesuit keeps going even if you stop. Your body will keep moving back and forth a few times, and using more energy when you need.”

Shane Kimbrough spent more than 12 hours outside the International Space Station during one mission. Credit: NASA
Shane Kimbrough spent more than 12 hours outside the International Space Station during one mission. Credit: NASA

During the shuttle era, astronauts tended to specialize in different areas of spaceflight — robotics and extra-vehicular activity (spacewalks) being some of the fields. The station, however, demands that astronauts be versed in both, Kimbrough said. Any crew could be called upon to do a repair on short notice, or to haul in a robotic spacecraft (like SpaceX’s Dragon) that arrives at station.

This means there’s a huge demand within NASA now for spacewalking expertise. Before stepping into the NBL, the astronauts run through the procedures in the classroom, and will get a look at the tools to make sure they understand their functions. Occasionally, a crew might pop on scuba suits to do a rough run of an expected spacewalk at the station, rehearsing where they should be and how they should position themselves.

A spacesuit really limits the astronaut’s range of motion, making the hours of training crucial. “For people like myself, with short arms, our work envelope is very small,” said Kimbrough, who is hoping for another flight assignment.

“It’s really out in front, not very far, in a circular motion. If you put your hand out in front, a small circle, that’s my work envelope. If I want to get something higher or lower, I can’t get there by reaching based on the way the [spacesuit] shoulder and arm operates. You maybe have to go sideways or upside down.”

November 3, 2007 – Canadarm2 played a big role in helping astronauts fix a torn solar array.  The arm’s reach was extended by the Orbiter Boom Sensor System, and here, allowing astronaut Scott Parazynski analyses the solar panel while anchored to the boom. Credit: NASA
November 3, 2007 – Canadarm2 played a big role in helping astronauts fix a torn solar array. The arm’s reach was extended by the Orbiter Boom Sensor System, and here, allowing astronaut Scott Parazynski analyses the solar panel while anchored to the boom. Credit: NASA

Spacewalking is inherently a dangerous business. Many people remember a daring station-era spacewalk in 2007, when Scott Parazynski dangled on the end of a Canadarm2 extension to stitch together a torn — and live — solar array. For this spacewalk, a lot of procedures were put together on the fly.

NASA also has a computer program that can roughly simulate how the astronauts can get into various areas of the station, and this was extensively used before Parazynski’s spacewalk, Kimbrough said.

Kimbrough’s crew had a more messy problem as they worked to repair the broken solar array rotary joint (that controlled one of the station’s solar panel arrays) and do other station work. The grease guns the crew used in that mission periodically squirted way too much grease and covered everything. The work area, the spacesuits, the tools.

“It had to do with the thermal properties,” Kimbrough said. “It would go in between pretty hard, to not being so hard. So sometimes, the grease guns that were designed at the time leaked … they have been redesigned, a few modifications, and they’ve worked well since then.”

Kimbrough himself ran into a minor, but still surprising situation when at the end of a lengthy tether. It turned out that tether had a bit of zing to it. “I was working way out on the end of the truss, and it was nighttime and I felt somebody pulling me back and almost spinning me around. The force of it surprised me the most.”

Other astronauts had warned him about that ahead of time, Kimbrough said, but he didn’t realize how vehement the pull could be. “I was a believer after that,” he joked.